Rapid growth is an innovative trait of woody bamboos that has been widely studied.However,the genetic basis and evolution of this trait are poorly understood.Taking advantage of genomic resources of 11 representative ...Rapid growth is an innovative trait of woody bamboos that has been widely studied.However,the genetic basis and evolution of this trait are poorly understood.Taking advantage of genomic resources of 11 representative bamboos at different ploidal levels,we integrated morphological,physiological,and transcriptomic datasets to investigate rapid growth.In particular,these bamboos include two large-sized and a small-sized woody species,compared with a diploid herbaceous species.Our results showed that gibberellin A1 was important for the rapid shoot growth of the world's largest bamboo,Dendrocalamus sinicus,and indicated that two gibberellins(GAs)-related genes,KAO and SLRL1,were key to the rapid shoot growth and culm size in woody bamboos.The expression of GAs-related genes exhibited significant subgenome asymmetry with subgenomes A and C demonstrating expression dominance in the large-sized woody bamboos while the generally submissive subgenomes B and D dominating in the small-sized species.The subgenome asymmetry was found to be correlated with the subgenome-specific gene structure,particularly UTRs and core promoters.Our study provides novel insights into the molecular mechanism and evolution of rapid shoot growth following allopolyploidization in woody bamboos,particularly via subgenome asymmetry.These findings are helpful for understanding of how polyploidization in general and subgenome asymmetry in particular contributed to the origin of innovative traits in plants.展开更多
Many countries throughout the world have experienced large earthquakes,which cause building damage or collapse.After such earthquakes,structures must be inspected rapidly to judge whether they are safe to reoccupy.To ...Many countries throughout the world have experienced large earthquakes,which cause building damage or collapse.After such earthquakes,structures must be inspected rapidly to judge whether they are safe to reoccupy.To facilitate the inspection process,the authors previously developed a rapid building safety assessment system using sparse acceleration measurements for steel framed buildings.The proposed system modeled nonlinearity in the measurement data using a calibrated simplified lumped-mass model and convolutional neural networks(CNNs),based on which the buildinglevel damage index was estimated rapidly after earthquakes.The proposed system was validated for a nonlinear 3D numerical model of a five-story steel building,and later for a large-scale specimen of an 18-story building in Japan tested on the E-Defense shaking table.However,the applicability of the safety assessment system for reinforced concrete(RC)structures with complex hysteretic material nonlinearity has yet to be explored;the previous approach based on a simplified lumpedmass model with a Bouc-Wen hysteretic model does not accurately represent the inherent nonlinear behavior and resulting damage states of RC structures.This study extends the rapid building safety assessment system to low-rise RC moment resisting frame structures representing typical residential apartments in Japan.First,a safety classification for RC structures based on a damage index consistent with the current state of practice is defined.Then,a 3D nonlinear numerical model of a two-story moment frame structure is created.A simplified lumped-mass nonlinear model is developed and calibrated using the 3D model,incorporating the Takeda degradation model for the RC material nonlinearity.This model is used to simulate the seismic response and associated damage sensitive features(DSF)for random ground motion.The resulting database of responses is used to train a convolutional neural network(CNN)that performs rapid safety assessment.The developed system is validated using the 3D nonlinear analysis model subjected to historical earthquakes.The results indicate the applicability of the proposed system for RC structures following seismic events.展开更多
Phosphate-coating was prepared for C/C composite using liquid-impregnation and different heat-treatment. The results show that the mass-loss rate of sample A with 1-2 ℃/min slow-cooling rate technology is 47%after ox...Phosphate-coating was prepared for C/C composite using liquid-impregnation and different heat-treatment. The results show that the mass-loss rate of sample A with 1-2 ℃/min slow-cooling rate technology is 47%after oxidation at 700 ℃ for 20 h, while that of sample B with air-fast-cooling one is only 0.98%. SEM images reveal that the coating of sample A is full of micro-holes, micro-cracks and many piece-like crystal particles, while that of sample B is integrated and compacted in glassy state with a few of micro-cracks. The coating of sample A is almost exhausted only in 8 h oxidized-test at 700 ℃, while that of sample B remains integrated after 8 h test at 700 ℃ and becomes loose due to much small pores generated after 20 h test at 700 ℃.展开更多
The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau v...The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau voltage of the alloy which was heat-treated in various temperatures and times had different changes during the cycle process, the optimum heat-treatment conditions of this alloy were determined by this work.展开更多
The Fe-based amorphous coatings were produced by air plasma spraying. The as-sprayed coatings were heat-treated at the temperature of 573, 873, and 1 023 K, respectively. The crystallization and wear behavior of the h...The Fe-based amorphous coatings were produced by air plasma spraying. The as-sprayed coatings were heat-treated at the temperature of 573, 873, and 1 023 K, respectively. The crystallization and wear behavior of the heat-treated amorphous coatings were investigated. It was found that the amorphous- nanocrystalline transformation appeared when the as-sprayed coatings were treated at 853 K. The crystallization process had completed and a coating with microcrystallines was formed when the treatment temperature reached 1 023 K. The resultant amorphous and nanocrystalline composite coatings exhibited superior wear resistance compared to crystalline coating. It is attributed to fine grain strengthening of formed nanocrystallines.展开更多
Pinus massoniana wood was modified by steam heat-treatment at 160℃,180℃,200℃ and 220℃ respectively and effects of the changes of density,pH,surface wettability and apparent morphology of Pinus massoniana heat-trea...Pinus massoniana wood was modified by steam heat-treatment at 160℃,180℃,200℃ and 220℃ respectively and effects of the changes of density,pH,surface wettability and apparent morphology of Pinus massoniana heat-treated wood on its bonding performance were studied in this paper.The results showed that Pinus massoniana wood underwent a series of physical and chemical changes during heat-treatment as the the following:(1)The degradation of hemicellulose and cellulose with low degree of polymerization,degradation and migration of the extract resulting in the decline of density and pH of heat-treated Pinus massoniana wood.(2)Brittle fracture occured on the cell wall surface,and the pit collapse,shrink and deformation,resulting in the formation of roughness and porosity on the wood surface.(3)The surface energy decreased with the improvement of temperature,the surface wettability of Pinus massoniana wood treated at 160℃–180℃ was good,while that at 200℃–220℃ showed hydrophobicity.(4)Changes of density,pH,surface roughness and porosity,and wettability resulted in a reduction in the bonding strength and reliability of heat-treated Pinus massoniana wood with MUF resin adhesive.(5)When the temperature was at 160℃–180℃,the better wettability of heat-treated Pinus massoniana wood could guarantee the better bonding performance.展开更多
Homogeneous HA coating materials were prepared on porous titanium by the low-temperature combustion synthesis. It was found that the mechanical properties of the specimen depend on the coating process and the heat tre...Homogeneous HA coating materials were prepared on porous titanium by the low-temperature combustion synthesis. It was found that the mechanical properties of the specimen depend on the coating process and the heat treatment, and the bending strength would be reduced during the coating process but could be improved by heat treatment. The effects of the temperature during heat- treatment on the phase composition and microstructure of the as-prepared coating, and the bending strength of the specimen were investigated by XRD and SEM. The experimental results show that in the coating process, slight oxidation of the substrate may give rise to a drop in bending strength ; however, it could be increased by the reaction of HA and TiO2 , and the sintering of the coating during heat treatment. The HA particles in the coating, with very fine sized particles. were pretty active and would decompose at 800℃.展开更多
In the paper, the effect of heat-treatment on the strength and toughness of AIN-SiC whisker composites with Y2O3 + SiO2 additives have been studied. When the Sample confining 10wt% Y2O3+SiO2(.Y2O3/SiO2^l/0. 66) -was t...In the paper, the effect of heat-treatment on the strength and toughness of AIN-SiC whisker composites with Y2O3 + SiO2 additives have been studied. When the Sample confining 10wt% Y2O3+SiO2(.Y2O3/SiO2^l/0. 66) -was treated at 1330癈 in air for 140 hours ithe flexural strength of composites ivas raised from 481 MPa to 784 MPa the toughness ruas also enhanced slightly. The phase composi-tion infrastructure and grain boundary phase structure have been char-acterized by combining XDR, SEM, TEM/EDXA and HREM tech-niques, reinforcenent and toughening mechanism of the composites re-sults from the crystallization of glass phase in the grain boundary at the high temperature oxidizing atmosphere to form the crossing struc-ture of 2H?sialon fibrous phase and SiC whisker展开更多
AlN-SiC whisker composites with Y2O3 and SiO2 additives were heat-treated at 1300 ℃ in air. The phase composition and microstrurture were analyzed using XRD, SEM and HREM techniques to study the effect of heat-treatm...AlN-SiC whisker composites with Y2O3 and SiO2 additives were heat-treated at 1300 ℃ in air. The phase composition and microstrurture were analyzed using XRD, SEM and HREM techniques to study the effect of heat-treatment on the microstructure and properties of the composites. The results reveal that the mechanical properties and high temperature oxidation resistance of the composite of ivhich additives composition approaches the eutectic point of Y2O3-SiO2 can be improved through the heat-treatment. Glass phase in the grain boundary is observed to react with the surface composition of AlN forming fibrous 2Hδ Sialon, resulting a crossing structure produced by fibrous 2Hδ Sialon and SiC whiskers.展开更多
Enhancement of oxidative stability of canola oil extracted from seed subjected to prior heat-treatment has been attributed to heat-induced generation of antioxidants from phenolic precursors occurring in canola seed. ...Enhancement of oxidative stability of canola oil extracted from seed subjected to prior heat-treatment has been attributed to heat-induced generation of antioxidants from phenolic precursors occurring in canola seed. Dispersion of aqueous extracts of intact seed oil bodies (OBs) in water is a novel and interesting way of producing natural and oxidatively stable food emulsions with minimal use of synthetic antioxidants and emulsifiers. As there is growing interest in natural food emulsions containing unsaturated oils, we investigated whether the oxidative stability of canola OB emulsions could be further improved by subjecting canola seed to heat-treatment prior to oil body extraction. Oil-in-water (5%, w/w) emulsions of OBs extracted from canola seed before and after heat-treatment were considerably more resistant to oxidation than emulsions prepared from refined canola oil and Tween? 40 emulsifier. However, only small amounts (0.9% - 4.5% by weight) of the phenolic compounds present in canola seed were transferred to the OBs after aqueous extraction, and consequently there was no discernible effect on oxidative stability as a result of prior heat-treatment of the seed. Thus, in contrast to oil, there is no oxidative stability benefit to be gained by subjecting canola seed to heat-treatment prior to extraction of OBs.展开更多
Under the influence of anthropogenic and climate change,the problems caused by urban heat island(UHI)has become increasingly prominent.In order to promote urban sustainable development and improve the quality of human...Under the influence of anthropogenic and climate change,the problems caused by urban heat island(UHI)has become increasingly prominent.In order to promote urban sustainable development and improve the quality of human settlements,it is significant for exploring the evolution characteristics of urban thermal environment and analyzing its driving forces.Taking the Landsat series images as the basic data sources,the winter land surface temperature(LST)of the rapid urbanization area of Fuzhou City in China was quantitatively retrieved from 2001 to 2021.Combing comprehensively the standard deviation ellipse model,profile analysis and GeoDetector model,the spatio-temporal evolution characteristics and influencing factors of the winter urban thermal environment were systematically analyzed.The results showed that the winter LST presented an increasing trend in the study area during 2001–2021,and the winter LST of the central urban regions was significantly higher than the suburbs.There was a strong UHI effect from 2001 to 2021with an expansion trend from the central urban regions to the suburbs and coastal areas in space scale.The LST of green lands and wetlands are significantly lower than croplands,artificial surface and unvegetated lands.Vegetation and water bodies had a significant mitigation effect on UHI,especially in the micro-scale.The winter UHI had been jointly driven by the underlying surface and socio-economic factors in a nonlinear or two-factor interactive enhancement mode,and socio-economic factors had played a leading role.This research could provide data support and decision-making references for rationally planning urban layout and promoting sustainable urban development.展开更多
The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pe...The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pesticide residues in tea products exceed the maximum residue limits. However, the complex matrices present in tea samples comprise a major challenge in the analytical detection of pesticide residues. In this study, nine types of lateral flow immunochromatographic strips (LFICSs) were developed to detect the pesticides of interest (fenpropathrin, chlorpyrifos, imidacloprid, thiamethoxam, acetamiprid, carbendazim, chlorothalonil, pyraclostrobin, and iprodione). To reduce the interference of tea substrates on the assay sensitivity, the pretreatment conditions for tea samples, including the extraction solvent, extraction time, and purification agent, were optimized for the simultaneous detection of these pesticides. The entire testing procedure (including pretreatment and detection) could be completed within 30 min. The detected results of authentic tea samples were confirmed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), which suggest that the LFICS coupled with sample rapid pretreatment can be used for on-site rapid screening of the target pesticide in tea products prior to their market release.展开更多
The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/Si...The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/SiO_(2))with a three-dimensional network structure using sol-gel,atmospheric pressure drying technique as well as heat-treated processes to achieve enhanced microwave absorption capabilities in the low frequency range.The pristine RF/SiO_(2)aerogel presented a typical micropores structure with a surface area,porous volume,and density of 146.82 m^(2)/g,62.40%,and 0.28 cm^(3)/g,respectively.Remarkably,the RF/SiO_(2)aerogel showed an effective absorption bandwidth of 3.56 GHz and a minimum reflection loss value of-46.10 d B at 2.25 mm after being heat-treated at 1500°C,while the maximum effective absorption bandwidth was 3.60 GHz at 2.30 mm.The intricate three-dimensional networks possessed remarkable impedance matching,multiple attenuation mechanisms,interfacial polarization,and dielectric loss,which were attributed to the exceptional ability to absorb electromagnetic microwaves.It offered a fresh approach to creating adaptable and effective microwave absorption materials in military defense.展开更多
Background: Dementia is a condition with progressive cognitive dysfunction and manifestation of both behavioral and psychosocial symptoms. Non-pharmacological measures such as music therapy are gaining importance sinc...Background: Dementia is a condition with progressive cognitive dysfunction and manifestation of both behavioral and psychosocial symptoms. Non-pharmacological measures such as music therapy are gaining importance since efficacy and safety of people with dementia have been questionable for pharmacological measures. Patient’s response to music is persistent even in the later stage of dementia. Aim: This rapid review aims to identify, analyze, evaluate, and summarize the best available evidence on the effectiveness of music-based therapeutic interventions among people with dementia. Method: CINAHL Cochrane Library, internet websites of rapid review producers, and reference lists were searched to identify articles for inclusion. Two reviewers independently screened the literature search results. Effectiveness, music-based therapeutic intervention, dementia, Alzheimer’s disease, systematic review and systematic review with meta-analysis terms were used to abstract data from included studies. Main Findings: 11 SRs and SRs with meta-analysis were reviewed which revealed positive effect of music therapy on five major outcomes with 9 studies effect on behavioral outcome, 6 studies with positive effect on psychosocial outcome reducing anxiety, 6 with improved cognition, 1 study revealed with improved quality of life and 1 study revealed effect on physiological outcomes. Conclusion: Music therapy has positive effect on treatment of dementia but further studies with larger sample size and specified to single intervention should be conducted to provide generalisable and precise results on this topic.展开更多
The Mg-Y-Zn magnesium alloy system is commonly recognized for its remarkable combination of high strength and ductility,achieved even with minimal amounts of alloying elements.This exceptional performance is attribute...The Mg-Y-Zn magnesium alloy system is commonly recognized for its remarkable combination of high strength and ductility,achieved even with minimal amounts of alloying elements.This exceptional performance is attributed to its unique microstructure,which includes Long-Period Stacking Ordered(LPSO)phases or the distinctive microstructure derived from the LPSO phase,referred to as the Mille-Feuille structure(MFS).This study systematically compares the traditional ingot metallurgy method with the rapid solidification technique,coupled with diverse heat treatments and extrusion processes.Microscopic analyses reveal variations in the presence of LPSO phases,Mille-Feuille structure,and grain size,leading to divergent mechanical and corrosion properties.The rapid solidification approach stands out,ensuring superior mechanical properties alongside a reasonable corrosion rate.展开更多
1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is...1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is important to evaluate their performances before use. We tested a rapid antigen detection of SARS-CoV-2, based on the immunochromatography (Boson Biotech SARS-CoV-2 Ag Test (Xiamen Boson Biotech Co., Ltd., China)) and the results were compared with the real time reverse transcriptase-Polymerase chain reaction (RT-PCR) (Gold standard) results;2) Methods: From November 2021 to December 2021, samples were collected from symptomatic patients and asymptomatic individuals referred for testing in a hospital during the second pandemic wave in Gabon. All these participants attending “CTA Angondjé”, a field hospital set up as part of the management of COVID-19 in Gabon. Two nasopharyngeal swabs were collected in all the patients, one for Ag test and the other for RT-PCR;3) Results: A total of 300 samples were collected from 189 symptomatic and 111 asymptomatic individuals. The sensitivity and specificity of the antigen test were 82.5% [95%CI 73.8 - 89.3] and 97.9 % [95%CI 92.2 - 98.2] respectively, and the diagnostic accuracy was 84.4% (95% CI: 79.8 - 88.3%). The antigen test was more likely to be positive for samples with RT-PCR Ct values ≤ 32, with a sensitivity of 89.8%;4) Conclusions: The Boson Biotech SARS-CoV-2 Ag Test has good sensitivity and can detect SARS-CoV-2 infection, especially among symptomatic individuals with low viral load. This test could be incorporated into efficient testing algorithms as an alternative to PCR to decrease diagnostic delays and curb viral transmission.展开更多
The dynamic surface self-reconstruction behavior in local structure correlates with oxygen evolution reaction(OER)performance,which has become an effective strategy for constructing the catalytic active phase.However,...The dynamic surface self-reconstruction behavior in local structure correlates with oxygen evolution reaction(OER)performance,which has become an effective strategy for constructing the catalytic active phase.However,it remains a challenge to understand the mechanisms of reconstruction and to accomplish it fast and deeply.Here,we reported a photo-promoted rapid reconstruction(PRR)process on Ag nanoparticle-loaded amorphous Ni-Fe hydroxide nanosheets on carbon cloth for enhanced OER.The photogenerated holes generated by Ag in conjunction with the anodic potential contributed to a thorough reconstruction of the amorphous substrate.The valence state of unsaturated coordinated Fe atoms,which serve as active sites,is significantly increased,while the corresponding crystalline substrate shows little change.The different structural evolutions of amorphous and crystalline substrates during reconstruction lead to diverse pathways of OER.This PRR utilizing loaded noble metal nanoparticles can accelerate the generation of active species in the substrate and increase the electrical conductivity,which provides a new inspiration to develop efficient catalysts via reconstruction strategies.展开更多
Recent studies on tropical cyclone(TC)intensity change indicate that the development of a vertically aligned TC circulation is a key feature of its rapid intensification(RI),however,understanding how vortex alignment ...Recent studies on tropical cyclone(TC)intensity change indicate that the development of a vertically aligned TC circulation is a key feature of its rapid intensification(RI),however,understanding how vortex alignment occurs remains a challenging topic in TC intensity change research.Based on the simulation outputs of North Atlantic Hurricane Wilma(2005)and western North Pacific Typhoon Rammasun(2014),vortex track oscillations at different vertical levels and their associated role in vortex alignment are examined to improve our understanding of the vortex alignment during RI of TCs with initial hurricane intensity.It is found that vortex tracks at different vertical levels oscillate consistently in speed and direction during the RI of the two simulated TCs.While the consistent track oscillation reduces the oscillation tilt during RI,the reduction of vortex tilt results mainly from the mean track before RI.It is also found that the vortex tilt is primarily due to the mean vortex track before and after RI.The track oscillations are closely associated with wavenumber-1 vortex Rossby waves that are dominant wavenumber-1 circulations in the TC inner-core region.This study suggests that the dynamics of the wavenumber-1 vortex Rossby waves play an important role in the regulation of the physical processes associated with the track oscillation and vertical alignment of TCs.展开更多
The rapid advancement of gas sensitive properties in metal oxides is crucial for detecting hazardous gases in industrial and coal mining environments.However,the conventional experimental trial and error approach pose...The rapid advancement of gas sensitive properties in metal oxides is crucial for detecting hazardous gases in industrial and coal mining environments.However,the conventional experimental trial and error approach poses significant challenges and resource consumption for the high throughput screening of gas sensitive materials.Consequently,this paper introduced a novel screening approach that integrates first principles with machine learning(ML)to rapidly predict the gas sensitivity of materials.Initially,a comprehensive database of multi-physical parameters was established by modeling various adsorption sites on the surface of WO3,which serves as a representative material.Since density functional theory(DFT)is one of the first principles,DFT calculations were conducted to derive essential multi-physical parameters,including bandgap,density of states(DOS),Fermi level,adsorption energy,and structural modifications resulting from adsorption.The collected data was subsequently utilized to develop a cor-relation model linking the multi-physical parameters to gas sensitive performance using intelligent algo-rithms.The model’s performance was assessed through receiver operating characteristic(ROC)curves,confusion matrices,and other evaluation metrics,ultimately achieving a prediction accuracy of 90%for identifying key features influencing gas adsorption performance.This proposed strategy for predicting the gas sensitive characteristics of materials holds significant potential for application in identifying addi-tional gas sensitive properties across various materials.展开更多
基金supported by the Key Project of Natural Science Foundation of Yunnan Province(202401AS070082)the National Natural Science Foundation of China(grants 32120103003 and 31970355)facilitated by the Germplasm Bank of Wild Species.
文摘Rapid growth is an innovative trait of woody bamboos that has been widely studied.However,the genetic basis and evolution of this trait are poorly understood.Taking advantage of genomic resources of 11 representative bamboos at different ploidal levels,we integrated morphological,physiological,and transcriptomic datasets to investigate rapid growth.In particular,these bamboos include two large-sized and a small-sized woody species,compared with a diploid herbaceous species.Our results showed that gibberellin A1 was important for the rapid shoot growth of the world's largest bamboo,Dendrocalamus sinicus,and indicated that two gibberellins(GAs)-related genes,KAO and SLRL1,were key to the rapid shoot growth and culm size in woody bamboos.The expression of GAs-related genes exhibited significant subgenome asymmetry with subgenomes A and C demonstrating expression dominance in the large-sized woody bamboos while the generally submissive subgenomes B and D dominating in the small-sized species.The subgenome asymmetry was found to be correlated with the subgenome-specific gene structure,particularly UTRs and core promoters.Our study provides novel insights into the molecular mechanism and evolution of rapid shoot growth following allopolyploidization in woody bamboos,particularly via subgenome asymmetry.These findings are helpful for understanding of how polyploidization in general and subgenome asymmetry in particular contributed to the origin of innovative traits in plants.
基金supported by a fellowship from Design Department of Taisei Corporation。
文摘Many countries throughout the world have experienced large earthquakes,which cause building damage or collapse.After such earthquakes,structures must be inspected rapidly to judge whether they are safe to reoccupy.To facilitate the inspection process,the authors previously developed a rapid building safety assessment system using sparse acceleration measurements for steel framed buildings.The proposed system modeled nonlinearity in the measurement data using a calibrated simplified lumped-mass model and convolutional neural networks(CNNs),based on which the buildinglevel damage index was estimated rapidly after earthquakes.The proposed system was validated for a nonlinear 3D numerical model of a five-story steel building,and later for a large-scale specimen of an 18-story building in Japan tested on the E-Defense shaking table.However,the applicability of the safety assessment system for reinforced concrete(RC)structures with complex hysteretic material nonlinearity has yet to be explored;the previous approach based on a simplified lumpedmass model with a Bouc-Wen hysteretic model does not accurately represent the inherent nonlinear behavior and resulting damage states of RC structures.This study extends the rapid building safety assessment system to low-rise RC moment resisting frame structures representing typical residential apartments in Japan.First,a safety classification for RC structures based on a damage index consistent with the current state of practice is defined.Then,a 3D nonlinear numerical model of a two-story moment frame structure is created.A simplified lumped-mass nonlinear model is developed and calibrated using the 3D model,incorporating the Takeda degradation model for the RC material nonlinearity.This model is used to simulate the seismic response and associated damage sensitive features(DSF)for random ground motion.The resulting database of responses is used to train a convolutional neural network(CNN)that performs rapid safety assessment.The developed system is validated using the 3D nonlinear analysis model subjected to historical earthquakes.The results indicate the applicability of the proposed system for RC structures following seismic events.
基金Projects(09JJ4027)supported by the Natural Science Foundation of Hunan Province,ChinaProject(201206375003)supported by China Scholarship Council
文摘Phosphate-coating was prepared for C/C composite using liquid-impregnation and different heat-treatment. The results show that the mass-loss rate of sample A with 1-2 ℃/min slow-cooling rate technology is 47%after oxidation at 700 ℃ for 20 h, while that of sample B with air-fast-cooling one is only 0.98%. SEM images reveal that the coating of sample A is full of micro-holes, micro-cracks and many piece-like crystal particles, while that of sample B is integrated and compacted in glassy state with a few of micro-cracks. The coating of sample A is almost exhausted only in 8 h oxidized-test at 700 ℃, while that of sample B remains integrated after 8 h test at 700 ℃ and becomes loose due to much small pores generated after 20 h test at 700 ℃.
文摘The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau voltage of the alloy which was heat-treated in various temperatures and times had different changes during the cycle process, the optimum heat-treatment conditions of this alloy were determined by this work.
基金Funded by the Basic Scientific Research of Central Colleges,Chang’an University (No. CHD2011JC126)
文摘The Fe-based amorphous coatings were produced by air plasma spraying. The as-sprayed coatings were heat-treated at the temperature of 573, 873, and 1 023 K, respectively. The crystallization and wear behavior of the heat-treated amorphous coatings were investigated. It was found that the amorphous- nanocrystalline transformation appeared when the as-sprayed coatings were treated at 853 K. The crystallization process had completed and a coating with microcrystallines was formed when the treatment temperature reached 1 023 K. The resultant amorphous and nanocrystalline composite coatings exhibited superior wear resistance compared to crystalline coating. It is attributed to fine grain strengthening of formed nanocrystallines.
基金This work was supported by Science-technology Support Foundation of Guizhou Province of China(Nos.[2019]2308,NY[2015]3027,[2020]1Y125 and[2019]2325)National Natural Science Foundation of China(No.31800481)Forestry Department Foundation of Guizhou Province of China(Nos.[2017]14,[2018]13).
文摘Pinus massoniana wood was modified by steam heat-treatment at 160℃,180℃,200℃ and 220℃ respectively and effects of the changes of density,pH,surface wettability and apparent morphology of Pinus massoniana heat-treated wood on its bonding performance were studied in this paper.The results showed that Pinus massoniana wood underwent a series of physical and chemical changes during heat-treatment as the the following:(1)The degradation of hemicellulose and cellulose with low degree of polymerization,degradation and migration of the extract resulting in the decline of density and pH of heat-treated Pinus massoniana wood.(2)Brittle fracture occured on the cell wall surface,and the pit collapse,shrink and deformation,resulting in the formation of roughness and porosity on the wood surface.(3)The surface energy decreased with the improvement of temperature,the surface wettability of Pinus massoniana wood treated at 160℃–180℃ was good,while that at 200℃–220℃ showed hydrophobicity.(4)Changes of density,pH,surface roughness and porosity,and wettability resulted in a reduction in the bonding strength and reliability of heat-treated Pinus massoniana wood with MUF resin adhesive.(5)When the temperature was at 160℃–180℃,the better wettability of heat-treated Pinus massoniana wood could guarantee the better bonding performance.
文摘Homogeneous HA coating materials were prepared on porous titanium by the low-temperature combustion synthesis. It was found that the mechanical properties of the specimen depend on the coating process and the heat treatment, and the bending strength would be reduced during the coating process but could be improved by heat treatment. The effects of the temperature during heat- treatment on the phase composition and microstructure of the as-prepared coating, and the bending strength of the specimen were investigated by XRD and SEM. The experimental results show that in the coating process, slight oxidation of the substrate may give rise to a drop in bending strength ; however, it could be increased by the reaction of HA and TiO2 , and the sintering of the coating during heat treatment. The HA particles in the coating, with very fine sized particles. were pretty active and would decompose at 800℃.
文摘In the paper, the effect of heat-treatment on the strength and toughness of AIN-SiC whisker composites with Y2O3 + SiO2 additives have been studied. When the Sample confining 10wt% Y2O3+SiO2(.Y2O3/SiO2^l/0. 66) -was treated at 1330癈 in air for 140 hours ithe flexural strength of composites ivas raised from 481 MPa to 784 MPa the toughness ruas also enhanced slightly. The phase composi-tion infrastructure and grain boundary phase structure have been char-acterized by combining XDR, SEM, TEM/EDXA and HREM tech-niques, reinforcenent and toughening mechanism of the composites re-sults from the crystallization of glass phase in the grain boundary at the high temperature oxidizing atmosphere to form the crossing struc-ture of 2H?sialon fibrous phase and SiC whisker
文摘AlN-SiC whisker composites with Y2O3 and SiO2 additives were heat-treated at 1300 ℃ in air. The phase composition and microstrurture were analyzed using XRD, SEM and HREM techniques to study the effect of heat-treatment on the microstructure and properties of the composites. The results reveal that the mechanical properties and high temperature oxidation resistance of the composite of ivhich additives composition approaches the eutectic point of Y2O3-SiO2 can be improved through the heat-treatment. Glass phase in the grain boundary is observed to react with the surface composition of AlN forming fibrous 2Hδ Sialon, resulting a crossing structure produced by fibrous 2Hδ Sialon and SiC whiskers.
文摘Enhancement of oxidative stability of canola oil extracted from seed subjected to prior heat-treatment has been attributed to heat-induced generation of antioxidants from phenolic precursors occurring in canola seed. Dispersion of aqueous extracts of intact seed oil bodies (OBs) in water is a novel and interesting way of producing natural and oxidatively stable food emulsions with minimal use of synthetic antioxidants and emulsifiers. As there is growing interest in natural food emulsions containing unsaturated oils, we investigated whether the oxidative stability of canola OB emulsions could be further improved by subjecting canola seed to heat-treatment prior to oil body extraction. Oil-in-water (5%, w/w) emulsions of OBs extracted from canola seed before and after heat-treatment were considerably more resistant to oxidation than emulsions prepared from refined canola oil and Tween? 40 emulsifier. However, only small amounts (0.9% - 4.5% by weight) of the phenolic compounds present in canola seed were transferred to the OBs after aqueous extraction, and consequently there was no discernible effect on oxidative stability as a result of prior heat-treatment of the seed. Thus, in contrast to oil, there is no oxidative stability benefit to be gained by subjecting canola seed to heat-treatment prior to extraction of OBs.
基金Under the auspices of the Social Science and Humanity on Young Fund of the Ministry of Education of China(No.21YJCZH100)the Scientific Research Project on Outstanding Young of the Fujian Agriculture and Forestry University(No.XJQ201920)+1 种基金the Science and Technology Innovation Special Fund Project of Fujian Agriculture and Forestry University(No.CXZX2021032)the Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry University(No.72202200205)。
文摘Under the influence of anthropogenic and climate change,the problems caused by urban heat island(UHI)has become increasingly prominent.In order to promote urban sustainable development and improve the quality of human settlements,it is significant for exploring the evolution characteristics of urban thermal environment and analyzing its driving forces.Taking the Landsat series images as the basic data sources,the winter land surface temperature(LST)of the rapid urbanization area of Fuzhou City in China was quantitatively retrieved from 2001 to 2021.Combing comprehensively the standard deviation ellipse model,profile analysis and GeoDetector model,the spatio-temporal evolution characteristics and influencing factors of the winter urban thermal environment were systematically analyzed.The results showed that the winter LST presented an increasing trend in the study area during 2001–2021,and the winter LST of the central urban regions was significantly higher than the suburbs.There was a strong UHI effect from 2001 to 2021with an expansion trend from the central urban regions to the suburbs and coastal areas in space scale.The LST of green lands and wetlands are significantly lower than croplands,artificial surface and unvegetated lands.Vegetation and water bodies had a significant mitigation effect on UHI,especially in the micro-scale.The winter UHI had been jointly driven by the underlying surface and socio-economic factors in a nonlinear or two-factor interactive enhancement mode,and socio-economic factors had played a leading role.This research could provide data support and decision-making references for rationally planning urban layout and promoting sustainable urban development.
基金supported by grants from Shanghai Agriculture Applied Technology Development Program,China(Grant No.:2020-02-08-00-08-F01456)the Key Research and Development Program of Zhejiang Province,China(Grant No.:2020C02024-2).
文摘The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pesticide residues in tea products exceed the maximum residue limits. However, the complex matrices present in tea samples comprise a major challenge in the analytical detection of pesticide residues. In this study, nine types of lateral flow immunochromatographic strips (LFICSs) were developed to detect the pesticides of interest (fenpropathrin, chlorpyrifos, imidacloprid, thiamethoxam, acetamiprid, carbendazim, chlorothalonil, pyraclostrobin, and iprodione). To reduce the interference of tea substrates on the assay sensitivity, the pretreatment conditions for tea samples, including the extraction solvent, extraction time, and purification agent, were optimized for the simultaneous detection of these pesticides. The entire testing procedure (including pretreatment and detection) could be completed within 30 min. The detected results of authentic tea samples were confirmed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), which suggest that the LFICS coupled with sample rapid pretreatment can be used for on-site rapid screening of the target pesticide in tea products prior to their market release.
基金supported by the Fundamental Research Funds for the Central Universities(Grant Nos.D5000210522 and D5000210517)China Postdoctoral Science Foundation(Grant No.2021M702665)+2 种基金Natural Science Foundation of Shaanxi Province(Grant Nos.2022JQ-482 and 2023-JC-QN-0380)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2021A1515111155,2022A1515111200 and 2022A1515011191)Basic Research Programs of Taicang(Grant Nos.TC2021JC01,TC2021JC21,and TC2022JC08)。
文摘The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/SiO_(2))with a three-dimensional network structure using sol-gel,atmospheric pressure drying technique as well as heat-treated processes to achieve enhanced microwave absorption capabilities in the low frequency range.The pristine RF/SiO_(2)aerogel presented a typical micropores structure with a surface area,porous volume,and density of 146.82 m^(2)/g,62.40%,and 0.28 cm^(3)/g,respectively.Remarkably,the RF/SiO_(2)aerogel showed an effective absorption bandwidth of 3.56 GHz and a minimum reflection loss value of-46.10 d B at 2.25 mm after being heat-treated at 1500°C,while the maximum effective absorption bandwidth was 3.60 GHz at 2.30 mm.The intricate three-dimensional networks possessed remarkable impedance matching,multiple attenuation mechanisms,interfacial polarization,and dielectric loss,which were attributed to the exceptional ability to absorb electromagnetic microwaves.It offered a fresh approach to creating adaptable and effective microwave absorption materials in military defense.
文摘Background: Dementia is a condition with progressive cognitive dysfunction and manifestation of both behavioral and psychosocial symptoms. Non-pharmacological measures such as music therapy are gaining importance since efficacy and safety of people with dementia have been questionable for pharmacological measures. Patient’s response to music is persistent even in the later stage of dementia. Aim: This rapid review aims to identify, analyze, evaluate, and summarize the best available evidence on the effectiveness of music-based therapeutic interventions among people with dementia. Method: CINAHL Cochrane Library, internet websites of rapid review producers, and reference lists were searched to identify articles for inclusion. Two reviewers independently screened the literature search results. Effectiveness, music-based therapeutic intervention, dementia, Alzheimer’s disease, systematic review and systematic review with meta-analysis terms were used to abstract data from included studies. Main Findings: 11 SRs and SRs with meta-analysis were reviewed which revealed positive effect of music therapy on five major outcomes with 9 studies effect on behavioral outcome, 6 studies with positive effect on psychosocial outcome reducing anxiety, 6 with improved cognition, 1 study revealed with improved quality of life and 1 study revealed effect on physiological outcomes. Conclusion: Music therapy has positive effect on treatment of dementia but further studies with larger sample size and specified to single intervention should be conducted to provide generalisable and precise results on this topic.
基金supported by Japan Society for the Promotion of Science(KAKENHI Grant-in-Aid for Scientific Research18H05475,18H05476 and JP20H00312)+2 种基金MRC International Collaborative Research Grant.The authors would like to thank the Czech Science Foundation(Project No.22-22248S)specific university research(A1_FCHT_2024_007)for financial supportthe assistance provided by the Ferroic Multifunctionalities project,supported by the Ministry of Education,Youth,and Sports of the Czech Republic.Project No.CZ.02.01.01/00/22_008/0004591,co-funded by the European Union.CzechNanoLab project LM2023051 funded by MEYS CR is gratefully acknowledged for the financial support of the measurements/sample fabrication at LNSM Research Infrastructure.
文摘The Mg-Y-Zn magnesium alloy system is commonly recognized for its remarkable combination of high strength and ductility,achieved even with minimal amounts of alloying elements.This exceptional performance is attributed to its unique microstructure,which includes Long-Period Stacking Ordered(LPSO)phases or the distinctive microstructure derived from the LPSO phase,referred to as the Mille-Feuille structure(MFS).This study systematically compares the traditional ingot metallurgy method with the rapid solidification technique,coupled with diverse heat treatments and extrusion processes.Microscopic analyses reveal variations in the presence of LPSO phases,Mille-Feuille structure,and grain size,leading to divergent mechanical and corrosion properties.The rapid solidification approach stands out,ensuring superior mechanical properties alongside a reasonable corrosion rate.
文摘1) Background: Rapid and acurate diagnostic testing for case identification, quarantine, and contact tracing is essential for managing the COVID 19 pandemic. Rapid antigen detection tests are available, however, it is important to evaluate their performances before use. We tested a rapid antigen detection of SARS-CoV-2, based on the immunochromatography (Boson Biotech SARS-CoV-2 Ag Test (Xiamen Boson Biotech Co., Ltd., China)) and the results were compared with the real time reverse transcriptase-Polymerase chain reaction (RT-PCR) (Gold standard) results;2) Methods: From November 2021 to December 2021, samples were collected from symptomatic patients and asymptomatic individuals referred for testing in a hospital during the second pandemic wave in Gabon. All these participants attending “CTA Angondjé”, a field hospital set up as part of the management of COVID-19 in Gabon. Two nasopharyngeal swabs were collected in all the patients, one for Ag test and the other for RT-PCR;3) Results: A total of 300 samples were collected from 189 symptomatic and 111 asymptomatic individuals. The sensitivity and specificity of the antigen test were 82.5% [95%CI 73.8 - 89.3] and 97.9 % [95%CI 92.2 - 98.2] respectively, and the diagnostic accuracy was 84.4% (95% CI: 79.8 - 88.3%). The antigen test was more likely to be positive for samples with RT-PCR Ct values ≤ 32, with a sensitivity of 89.8%;4) Conclusions: The Boson Biotech SARS-CoV-2 Ag Test has good sensitivity and can detect SARS-CoV-2 infection, especially among symptomatic individuals with low viral load. This test could be incorporated into efficient testing algorithms as an alternative to PCR to decrease diagnostic delays and curb viral transmission.
基金This work was supported by the National Natural Science Foundation of China(52073008,52272181)the China Postdoctoral Science Foundation(2023T160036).
文摘The dynamic surface self-reconstruction behavior in local structure correlates with oxygen evolution reaction(OER)performance,which has become an effective strategy for constructing the catalytic active phase.However,it remains a challenge to understand the mechanisms of reconstruction and to accomplish it fast and deeply.Here,we reported a photo-promoted rapid reconstruction(PRR)process on Ag nanoparticle-loaded amorphous Ni-Fe hydroxide nanosheets on carbon cloth for enhanced OER.The photogenerated holes generated by Ag in conjunction with the anodic potential contributed to a thorough reconstruction of the amorphous substrate.The valence state of unsaturated coordinated Fe atoms,which serve as active sites,is significantly increased,while the corresponding crystalline substrate shows little change.The different structural evolutions of amorphous and crystalline substrates during reconstruction lead to diverse pathways of OER.This PRR utilizing loaded noble metal nanoparticles can accelerate the generation of active species in the substrate and increase the electrical conductivity,which provides a new inspiration to develop efficient catalysts via reconstruction strategies.
基金National Natural Science Foundation of China(Grant Nos:42150710531,42192551,61827901)supported this study.
文摘Recent studies on tropical cyclone(TC)intensity change indicate that the development of a vertically aligned TC circulation is a key feature of its rapid intensification(RI),however,understanding how vortex alignment occurs remains a challenging topic in TC intensity change research.Based on the simulation outputs of North Atlantic Hurricane Wilma(2005)and western North Pacific Typhoon Rammasun(2014),vortex track oscillations at different vertical levels and their associated role in vortex alignment are examined to improve our understanding of the vortex alignment during RI of TCs with initial hurricane intensity.It is found that vortex tracks at different vertical levels oscillate consistently in speed and direction during the RI of the two simulated TCs.While the consistent track oscillation reduces the oscillation tilt during RI,the reduction of vortex tilt results mainly from the mean track before RI.It is also found that the vortex tilt is primarily due to the mean vortex track before and after RI.The track oscillations are closely associated with wavenumber-1 vortex Rossby waves that are dominant wavenumber-1 circulations in the TC inner-core region.This study suggests that the dynamics of the wavenumber-1 vortex Rossby waves play an important role in the regulation of the physical processes associated with the track oscillation and vertical alignment of TCs.
基金funded by National Natural Science Foundation of China(No.52303356)Natural Science Foundation of Jiangsu Province(No.BK20210494)+2 种基金Natural Science Foundation of Jiangsu Province(No.BK20221115)National Key Research and Development Project(No.2000YFC2006601)Scientific Research Foundation for Excellent Talents of Xuzhou Medical University(No.D2019032).
文摘The rapid advancement of gas sensitive properties in metal oxides is crucial for detecting hazardous gases in industrial and coal mining environments.However,the conventional experimental trial and error approach poses significant challenges and resource consumption for the high throughput screening of gas sensitive materials.Consequently,this paper introduced a novel screening approach that integrates first principles with machine learning(ML)to rapidly predict the gas sensitivity of materials.Initially,a comprehensive database of multi-physical parameters was established by modeling various adsorption sites on the surface of WO3,which serves as a representative material.Since density functional theory(DFT)is one of the first principles,DFT calculations were conducted to derive essential multi-physical parameters,including bandgap,density of states(DOS),Fermi level,adsorption energy,and structural modifications resulting from adsorption.The collected data was subsequently utilized to develop a cor-relation model linking the multi-physical parameters to gas sensitive performance using intelligent algo-rithms.The model’s performance was assessed through receiver operating characteristic(ROC)curves,confusion matrices,and other evaluation metrics,ultimately achieving a prediction accuracy of 90%for identifying key features influencing gas adsorption performance.This proposed strategy for predicting the gas sensitive characteristics of materials holds significant potential for application in identifying addi-tional gas sensitive properties across various materials.