The direct observations of the atomic arrangements in both conventional furnace annealed and electric pulse rapid annealed Fe78B13Si9 amorphous alloy have been conducted by the lattice imaging technique in a higt reso...The direct observations of the atomic arrangements in both conventional furnace annealed and electric pulse rapid annealed Fe78B13Si9 amorphous alloy have been conducted by the lattice imaging technique in a higt resolution electron microscope. The results showed that the embrittlement of the alloy was related to the extent of atomic rearrangements during the annealing processes. The embrittlement of the alloy after 1hour conventional furnace annealing at about 270℃ is caused by the sufficient atomic rearrangements which are characterized by the growth of some bct Fe3B-like atomic short range ordering regions already existed in the as-quenched structure. Electric pulse rapid annealing can effectively retard the above-mentioned atomic rearrangements and thus restrain the embrittlement. The embrittlement only occurs when certain amount of bcc α-Fe nanocrystals are precipitated in the amorphous matrix during electric pulse rapid annealing.展开更多
Amorphous silicon films prepared by PECVD on glass substrate were crystallized by conventional furnace annealing(FA) and rapid thermal annealing(RTA),respectively. From the Raman spectra and scanning electronic micros...Amorphous silicon films prepared by PECVD on glass substrate were crystallized by conventional furnace annealing(FA) and rapid thermal annealing(RTA),respectively. From the Raman spectra and scanning electronic microscope(SEM),it found that the thin films made by RTA had smooth and perfect structure,while the thin films annealed by FA had a higher degree of structural disorder.展开更多
文摘The direct observations of the atomic arrangements in both conventional furnace annealed and electric pulse rapid annealed Fe78B13Si9 amorphous alloy have been conducted by the lattice imaging technique in a higt resolution electron microscope. The results showed that the embrittlement of the alloy was related to the extent of atomic rearrangements during the annealing processes. The embrittlement of the alloy after 1hour conventional furnace annealing at about 270℃ is caused by the sufficient atomic rearrangements which are characterized by the growth of some bct Fe3B-like atomic short range ordering regions already existed in the as-quenched structure. Electric pulse rapid annealing can effectively retard the above-mentioned atomic rearrangements and thus restrain the embrittlement. The embrittlement only occurs when certain amount of bcc α-Fe nanocrystals are precipitated in the amorphous matrix during electric pulse rapid annealing.
基金Natural Science Foundation of Henan Province(072300410310)Key Science and Technology Project of Henan Province(0624250022)
文摘Amorphous silicon films prepared by PECVD on glass substrate were crystallized by conventional furnace annealing(FA) and rapid thermal annealing(RTA),respectively. From the Raman spectra and scanning electronic microscope(SEM),it found that the thin films made by RTA had smooth and perfect structure,while the thin films annealed by FA had a higher degree of structural disorder.