Previously proposed differential modulation schemes for time-varying channels may not achieve the full transmit diversity and the maximum Doppler diversity simultaneously. Based on an existing basis expansion model, a...Previously proposed differential modulation schemes for time-varying channels may not achieve the full transmit diversity and the maximum Doppler diversity simultaneously. Based on an existing basis expansion model, a new differential space-time code, which wisely combines interleaver/de-interleaver with traditonal space-time transmitting technique to overcome such limitation, .is presented. Two noncoherent differential decoders, named decision-feedback differential detector (DF-DD) and Viterbi-algorithmbased multiple-symbol-detection differential detector ( MSD-DD), are also derived. We show that our design may recover data symbols with full antenna diversity and the maximum Doppler diversity at high signal-to-noise ratio. System performance is evaluated with simulations.展开更多
基金Supported bv the National Nature Science Foundation of China ( No. 603905405 ). and the National High Teehnology Research & Development Program of China (No. 2003AA12331005).
文摘Previously proposed differential modulation schemes for time-varying channels may not achieve the full transmit diversity and the maximum Doppler diversity simultaneously. Based on an existing basis expansion model, a new differential space-time code, which wisely combines interleaver/de-interleaver with traditonal space-time transmitting technique to overcome such limitation, .is presented. Two noncoherent differential decoders, named decision-feedback differential detector (DF-DD) and Viterbi-algorithmbased multiple-symbol-detection differential detector ( MSD-DD), are also derived. We show that our design may recover data symbols with full antenna diversity and the maximum Doppler diversity at high signal-to-noise ratio. System performance is evaluated with simulations.