Sampling-based planning algorithms play an important role in high degree-of-freedom motion planning(MP)problems,in which rapidly-exploring random tree(RRT)and the faster bidirectional RRT(named RRT-Connect)algorithms ...Sampling-based planning algorithms play an important role in high degree-of-freedom motion planning(MP)problems,in which rapidly-exploring random tree(RRT)and the faster bidirectional RRT(named RRT-Connect)algorithms have achieved good results in many planning tasks.However,sampling-based methods have the inherent defect of having difficultly in solving planning problems with narrow passages.Therefore,several algorithms have been proposed to overcome these drawbacks.As one of the improved algorithms,Rapidlyexploring random vines(RRV)can achieve better results,but it may perform worse in cluttered environments and has a certain environmental selectivity.In this paper,we present a new improved planning method based on RRT-Connect and RRV,named adaptive RRT-Connect(ARRT-Connect),which deals well with the narrow passage environments while retaining the ability of RRT algorithms to plan paths in other environments.The proposed planner is shown to be adaptable to a variety of environments and can accomplish path planning in a short time.展开更多
Due to the interrelationship between the base placement of the manipulator and its operation object,it is significant to analyze the accessibility and workspace of manipulators for the optimization of their base locat...Due to the interrelationship between the base placement of the manipulator and its operation object,it is significant to analyze the accessibility and workspace of manipulators for the optimization of their base location.A new method is presented to optimize the base placement of manipulators through motion planning optimization and location optimization in the feasible area for manipulators.Firstly,research problems and contents are outlined.And then the feasible area for the manipulator base installation is discussed.Next,index depended on the joint movements and used to evaluate the kinematic performance of manipulators is defined.Although the mentioned indices in last section are regarded as the cost function of the latter,rapidly-exploring random tree(RRT) and rapidly-exploring random tree*(RRT*) algorithms are analyzed.And then,the proposed optimization method of manipulator base placement is studied by means of simulation research based on kinematic performance criteria.Finally,the conclusions could be proved effective from the simulation results.展开更多
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
In order to solve the problem of path planning of mobile robots in a dynamic environment,an improved rapidly-exploring random tree^(*)(RRT^(*))algorithm is proposed in this paper.First,the target bias sampling is intr...In order to solve the problem of path planning of mobile robots in a dynamic environment,an improved rapidly-exploring random tree^(*)(RRT^(*))algorithm is proposed in this paper.First,the target bias sampling is introduced to reduce the randomness of the RRT^(*)algorithm,and then the initial path planning is carried out in a static environment.Secondly,apply the path in a dynamic environment,and use the initially planned path as the path cache.When a new obstacle appears in the path,the invalid path is clipped and the path is replanned.At this time,there is a certain probability to select the point in the path cache as the new node,so that the new path maintains the trend of the original path to a greater extent.Finally,MATLAB is used to carry out simulation experiments for the initial planning and replanning algorithms,respectively.More specifically,compared with the original RRT^(*)algorithm,the simulation results show that the number of nodes used by the new improved algorithm is reduced by 43.19%on average.展开更多
Credit card fraud is a wide-ranging issue for financial institutions, involving theft and fraud committed using a payment card. In this paper, we explore the application of linear and nonlinear statistical modeling an...Credit card fraud is a wide-ranging issue for financial institutions, involving theft and fraud committed using a payment card. In this paper, we explore the application of linear and nonlinear statistical modeling and machine learning models on real credit card transaction data. The models built are supervised fraud models that attempt to identify which transactions are most likely fraudulent. We discuss the processes of data exploration, data cleaning, variable creation, feature selection, model algorithms, and results. Five different supervised models are explored and compared including logistic regression, neural networks, random forest, boosted tree and support vector machines. The boosted tree model shows the best fraud detection result (FDR = 49.83%) for this particular data set. The resulting model can be utilized in a credit card fraud detection system. A similar model development process can be performed in related business domains such as insurance and telecommunications, to avoid or detect fraudulent activity.展开更多
为解决快速扩展随机树算法(rapid-exploration random tree,RRT*)在三维环境中盲目搜索路径以及缺乏节点扩展记忆性等问题,提出一种融合蚁群算法的双向搜索算法ACO-RRT*。为适应精细化三维建模环境和解决地面起伏不平坦等问题,对RRT*算...为解决快速扩展随机树算法(rapid-exploration random tree,RRT*)在三维环境中盲目搜索路径以及缺乏节点扩展记忆性等问题,提出一种融合蚁群算法的双向搜索算法ACO-RRT*。为适应精细化三维建模环境和解决地面起伏不平坦等问题,对RRT*算法进行改进优化。采用双向搜索策略,在起点和终点同时运行改进后的RRT算法和蚁群算法,相向而行,对路径长度和运行时间进行优化。针对生成路径不够平滑等问题,引入B样条曲线平滑策略优化路径。仿真结果表明,所提算法能够有效用于机器人三维路径规划。展开更多
针对多障碍物环境下考虑无人机(Unmanned Aerial Vehicle,UAV)始末位姿、转弯半径和航迹长度的1阶光滑约束的UAV航迹规划问题,提出一种基于快速搜索随机树(Rapidly-exploring Random Trees,RRT)算法和Dubins曲线以局部最优逼近全局最优...针对多障碍物环境下考虑无人机(Unmanned Aerial Vehicle,UAV)始末位姿、转弯半径和航迹长度的1阶光滑约束的UAV航迹规划问题,提出一种基于快速搜索随机树(Rapidly-exploring Random Trees,RRT)算法和Dubins曲线以局部最优逼近全局最优的UAV航迹优化方法。利用RRT算法和基于贪心算法的剪枝优化方法,在二维任务空间中规划出满足避障要求的可行离散航路点。采用多条Dubins曲线平滑连接航路点,根据UAV始末位姿确定首尾曲线端点,基于UAV性能、障碍物和飞行参数的约束关系,建立多约束的航迹优化数学模型。通过粒子群优化算法确定曲线类型,同时优化曲线连接处位姿和曲线半径,获得最短航迹。仿真结果表明:所提方法得到的航迹与其他方法相比,在不同障碍物数量和始末位姿的多种场景中,平均长度缩短了11.48%,在避开障碍物的同时,满足UAV动力学约束。展开更多
针对液压重载机械臂的动态倾覆稳定性问题,提出了一种基于改进快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法的路径规划方法。与只对危险工况的静态稳定性校核不同,该算法以机械臂运动过程中的动态倾覆稳定性最优为目标,在机...针对液压重载机械臂的动态倾覆稳定性问题,提出了一种基于改进快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法的路径规划方法。与只对危险工况的静态稳定性校核不同,该算法以机械臂运动过程中的动态倾覆稳定性最优为目标,在机械臂的关节空间内进行路径规划。以7个关节变量组成的七维数组作为采样点,结合正运动学与力矩法建立机械臂的动态倾覆稳定性计算模型,利用双采样点择优原则,选择其在对应位姿下抗倾覆稳定力矩最优的随机点作为采样点,以增强算法的启发性。在Matlab平台进行的仿真实验表明,改进RRT算法规划路径的倾覆裕度在3种典型工况下分别提升了37%、28%和38%,有效地改善了液压重载机械臂作业平台的抗倾覆稳定性。展开更多
基金supported in part by the National Science Foundation of China(61976175,91648208)the Key Project of Natural Science Basic Research Plan in Shaanxi Province of China(2019JZ-05)。
文摘Sampling-based planning algorithms play an important role in high degree-of-freedom motion planning(MP)problems,in which rapidly-exploring random tree(RRT)and the faster bidirectional RRT(named RRT-Connect)algorithms have achieved good results in many planning tasks.However,sampling-based methods have the inherent defect of having difficultly in solving planning problems with narrow passages.Therefore,several algorithms have been proposed to overcome these drawbacks.As one of the improved algorithms,Rapidlyexploring random vines(RRV)can achieve better results,but it may perform worse in cluttered environments and has a certain environmental selectivity.In this paper,we present a new improved planning method based on RRT-Connect and RRV,named adaptive RRT-Connect(ARRT-Connect),which deals well with the narrow passage environments while retaining the ability of RRT algorithms to plan paths in other environments.The proposed planner is shown to be adaptable to a variety of environments and can accomplish path planning in a short time.
基金Supported by the National Science and Technology Support Program of China(No.2013BAK03B01)
文摘Due to the interrelationship between the base placement of the manipulator and its operation object,it is significant to analyze the accessibility and workspace of manipulators for the optimization of their base location.A new method is presented to optimize the base placement of manipulators through motion planning optimization and location optimization in the feasible area for manipulators.Firstly,research problems and contents are outlined.And then the feasible area for the manipulator base installation is discussed.Next,index depended on the joint movements and used to evaluate the kinematic performance of manipulators is defined.Although the mentioned indices in last section are regarded as the cost function of the latter,rapidly-exploring random tree(RRT) and rapidly-exploring random tree*(RRT*) algorithms are analyzed.And then,the proposed optimization method of manipulator base placement is studied by means of simulation research based on kinematic performance criteria.Finally,the conclusions could be proved effective from the simulation results.
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
基金National Natural Science Foundation of China(No.61903291)。
文摘In order to solve the problem of path planning of mobile robots in a dynamic environment,an improved rapidly-exploring random tree^(*)(RRT^(*))algorithm is proposed in this paper.First,the target bias sampling is introduced to reduce the randomness of the RRT^(*)algorithm,and then the initial path planning is carried out in a static environment.Secondly,apply the path in a dynamic environment,and use the initially planned path as the path cache.When a new obstacle appears in the path,the invalid path is clipped and the path is replanned.At this time,there is a certain probability to select the point in the path cache as the new node,so that the new path maintains the trend of the original path to a greater extent.Finally,MATLAB is used to carry out simulation experiments for the initial planning and replanning algorithms,respectively.More specifically,compared with the original RRT^(*)algorithm,the simulation results show that the number of nodes used by the new improved algorithm is reduced by 43.19%on average.
文摘Credit card fraud is a wide-ranging issue for financial institutions, involving theft and fraud committed using a payment card. In this paper, we explore the application of linear and nonlinear statistical modeling and machine learning models on real credit card transaction data. The models built are supervised fraud models that attempt to identify which transactions are most likely fraudulent. We discuss the processes of data exploration, data cleaning, variable creation, feature selection, model algorithms, and results. Five different supervised models are explored and compared including logistic regression, neural networks, random forest, boosted tree and support vector machines. The boosted tree model shows the best fraud detection result (FDR = 49.83%) for this particular data set. The resulting model can be utilized in a credit card fraud detection system. A similar model development process can be performed in related business domains such as insurance and telecommunications, to avoid or detect fraudulent activity.
文摘为解决快速扩展随机树算法(rapid-exploration random tree,RRT*)在三维环境中盲目搜索路径以及缺乏节点扩展记忆性等问题,提出一种融合蚁群算法的双向搜索算法ACO-RRT*。为适应精细化三维建模环境和解决地面起伏不平坦等问题,对RRT*算法进行改进优化。采用双向搜索策略,在起点和终点同时运行改进后的RRT算法和蚁群算法,相向而行,对路径长度和运行时间进行优化。针对生成路径不够平滑等问题,引入B样条曲线平滑策略优化路径。仿真结果表明,所提算法能够有效用于机器人三维路径规划。
文摘针对多障碍物环境下考虑无人机(Unmanned Aerial Vehicle,UAV)始末位姿、转弯半径和航迹长度的1阶光滑约束的UAV航迹规划问题,提出一种基于快速搜索随机树(Rapidly-exploring Random Trees,RRT)算法和Dubins曲线以局部最优逼近全局最优的UAV航迹优化方法。利用RRT算法和基于贪心算法的剪枝优化方法,在二维任务空间中规划出满足避障要求的可行离散航路点。采用多条Dubins曲线平滑连接航路点,根据UAV始末位姿确定首尾曲线端点,基于UAV性能、障碍物和飞行参数的约束关系,建立多约束的航迹优化数学模型。通过粒子群优化算法确定曲线类型,同时优化曲线连接处位姿和曲线半径,获得最短航迹。仿真结果表明:所提方法得到的航迹与其他方法相比,在不同障碍物数量和始末位姿的多种场景中,平均长度缩短了11.48%,在避开障碍物的同时,满足UAV动力学约束。
文摘针对液压重载机械臂的动态倾覆稳定性问题,提出了一种基于改进快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法的路径规划方法。与只对危险工况的静态稳定性校核不同,该算法以机械臂运动过程中的动态倾覆稳定性最优为目标,在机械臂的关节空间内进行路径规划。以7个关节变量组成的七维数组作为采样点,结合正运动学与力矩法建立机械臂的动态倾覆稳定性计算模型,利用双采样点择优原则,选择其在对应位姿下抗倾覆稳定力矩最优的随机点作为采样点,以增强算法的启发性。在Matlab平台进行的仿真实验表明,改进RRT算法规划路径的倾覆裕度在3种典型工况下分别提升了37%、28%和38%,有效地改善了液压重载机械臂作业平台的抗倾覆稳定性。