Adding rare earth oxide CeO_2 with variable valences to La_2O_3 formed a mixture of rare earth oxides. By means of dipping CeO_2, La_2O_3 and their mixture, whose carriers were all γ-Al_2O_3, were used as the catalys...Adding rare earth oxide CeO_2 with variable valences to La_2O_3 formed a mixture of rare earth oxides. By means of dipping CeO_2, La_2O_3 and their mixture, whose carriers were all γ-Al_2O_3, were used as the catalyst for the reduction of SO_2 by CO. The activation process of this catalyst and the impact of temperature and reactant concentration on the activation process were investigated. Using X-ray diffraction, the structure characteristics of catalyst before and after reaction were analyzed to reveal the change of phase structure. The result shows that the rare earth oxide mixtures composing of CeO_2 and La_2O_3, as the catalyst for the reduction of SO_2 by CO, diminish activation temperature 50~100 ℃ less and have higher activity than a single oxide CeO_2 or La_2O_3. The reason possibl is that La_2O_3 goes into in the lattice of CeO_2 to form solid phase complex CeO_2-La_2O_3 and increases the capability of CeO_2-La_2O_3/γ-Al_2O_3 catalyst to store oxygen, which supplies the redox of CeO_2 reaction with a better condition. At the same time, elemental sulfur formed in the redox reaction impels La_2O_3 to be transformed to activation phase La_2O_2S in a lower temperature, which can be explained with the synergism between redox reaction and COS intermediate mechanism reaction.展开更多
Non-rare earth impurity doped Sr2CeO4:X (X :Zn, Hg, Al, Ag, Cr) phosphors are prepared by using the combustion method. The structural and photoluminescent properties of the as-prepared phosphors are investigated b...Non-rare earth impurity doped Sr2CeO4:X (X :Zn, Hg, Al, Ag, Cr) phosphors are prepared by using the combustion method. The structural and photoluminescent properties of the as-prepared phosphors are investigated by X-ray diffraction (XRD) and photoluminescence at room temperature. Experimental results show that zinc addition and firing processing can effectively enhance the photoluminescence of Sr2CeO4 phosphors.展开更多
TiO_2 sols modified by rare earth (RE) ions (Ce^(4+), Eu^(3+), or Nd^(3+))were prepared by coprecipitation-peptization method. The photocatalysis activity was studied byinvestigating the photodegradation effects of ac...TiO_2 sols modified by rare earth (RE) ions (Ce^(4+), Eu^(3+), or Nd^(3+))were prepared by coprecipitation-peptization method. The photocatalysis activity was studied byinvestigating the photodegradation effects of active brilliant red dye X-3B. It is found that TiO_2sols modified by Ce^(4+), Eu^(3+), or Nd^(3+) have the anatase crystalline structure, which areprepared at 70℃. All RE^(n+)-TiO_2 sol samples have uniform nanoparticles with similar morphology,which are homogenously distributed in aqueous colloidal systems. The particle sizes are 10, 8, and12 nm for Nd^(3+)-TiO_2, Eu^(3+)-TiO_2, and Ce^(4+)-TiO_2, respectively. The character of ultrafineand positive charge sol particles contributes to the good adsorption of X-3B dye molecule on thesurface of titania (about 30% X-3B adsorption amount). Experimental results exhibit thatRE^(n+)-TiO_2 sol photocatalysts have the capability to photodegrade X-3B under visible lightirradiation. Nd^(3+)-TiO_2 and Eu^(3+)-TiO_2 show higher photocatalytic activity than Ce^(4+)-TiO_2,which is due to the difference of standard redox potential of RE^(n+)/RE^((n-1)+). RE^(n+)-TiO_2sols demonstrate more excellent interfacial adsorption and photodegradation effects to X-3B thanP_(25) TiO_2 crystallites. Moreover, the degradation mechanism of X-3B is proposed as dyephotosensitization and electron scavenging by rare earth ions.展开更多
Eight complexes of rare earth with 2 mercaptobenthiazole, RELCl 2·RE(OH) 3· x H 2O (L=2 mercaptobenthiazole, RE= La~Gd, Y, except for Pm, x =0, 2~4), were synthesized in unhydrous ethanol and char...Eight complexes of rare earth with 2 mercaptobenthiazole, RELCl 2·RE(OH) 3· x H 2O (L=2 mercaptobenthiazole, RE= La~Gd, Y, except for Pm, x =0, 2~4), were synthesized in unhydrous ethanol and characterized by elemental analyses, IR spectra and thermal analyses. The results show that the ligand is coordinated to the RE ion through both the exocyclic sulfur and the thiazole nitrogen. The vulcanizing properties of the La complex as accelerator were studied in the traditional tire rubber, which indicate that the cross linked rubber accelerated by the rare earth complex has good physical and dynamic mechanical properties by comparison.展开更多
Some compounds of LiCo 1- x RE x O 2 (RE=rare earth elements and x =0.01~0.03) were prepared by doping rare earth elements to LiCoO 2 via solid state synthesis. The microstructure characteristics of t...Some compounds of LiCo 1- x RE x O 2 (RE=rare earth elements and x =0.01~0.03) were prepared by doping rare earth elements to LiCoO 2 via solid state synthesis. The microstructure characteristics of the LiCo 1- x RE x O 2 were investigated by XRD. It was found that the lattice parameters c are increased and the lattice volumes are enlarged compared to that of LiCoO 2. Moreover, the performance of LiCo 1- x RE x O 2 as the cathode material in lithium ion battery is improved, especially LiCo 1- x Y x O 2 and LiCo 1- x La x O 2. The initial charge/discharge capacities of LiCo 0.99 Y 0.01 O 2 and LiCo 0.99 La 0.01 O 2 are 174/154 (mAh·g -1 ) and 159/149 (mAh·g -1 ) respectively, while those for LiCoO 2 working in the same way are only 139/131 (mAh·g -1 ).展开更多
The extraction of Nd^3+ and Sm^3+, including the extraction and stripping capability as well as the separation effect of Nd^3+ or Sm^3+, from a sulfuric acid medium, by mixtures of di-(2-ethylhexyl) phosphoric a...The extraction of Nd^3+ and Sm^3+, including the extraction and stripping capability as well as the separation effect of Nd^3+ or Sm^3+, from a sulfuric acid medium, by mixtures of di-(2-ethylhexyl) phosphoric acid (HDEHP, H2A2(0)) and 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (HEH/EHP, H2L2(0)) were studied. The distribution ratios and synergistic coefficients of Nd^3+ and Sm^3+ in different acidities were also determined. A synergistic extractive effect was found when HDEHP and HEH/EHP were used as mixed extractants for Sm^3+ or Nd^3+. The chemical compositions of the extracted complex were determined as Nd.(HA2)2-HL2 and Sm.(HA2)2-HL2. The extraction equilibrium constants, enthalpy change, and entropy change of the extraction reaction were also determined.展开更多
The decomposed process of bastnaesite, monazite and mixed rare earth concentrate in CaO-CaCl-CaCl2 was studied by means of TG-DTA method. The relationship among decomposition ratio, roasting temperature, and CaO-NaCl ...The decomposed process of bastnaesite, monazite and mixed rare earth concentrate in CaO-CaCl-CaCl2 was studied by means of TG-DTA method. The relationship among decomposition ratio, roasting temperature, and CaO-NaCl addition was studied by the quadratic regression orthogonal analysis, and then the regression equation was obtained. Through analysis, the optimum process conditions of mixed rare earth concentrate decomposed by CaO-CaCl-CaCl2 were obtained as follows: roasting temperature: 700℃, CaO addition: 15%, NaCl-CaCl2 addition: 10%, roasting time: 60 min, the decomposition ratio: 91.3%.展开更多
The density of states (DOS) of 17 kinds of rare earths (RE) doped rutile TiO2 was by using first-principles density functional theory (DFT) calculation. The band gap widths of RE doped futile TiO2 were important...The density of states (DOS) of 17 kinds of rare earths (RE) doped rutile TiO2 was by using first-principles density functional theory (DFT) calculation. The band gap widths of RE doped futile TiO2 were important factors for altering their absorbing wavelengths. The results show that RE ions could obviously reduce the band gap widths and form of energy of ruffle TiO2 except Lu, Y, Yb and Sc, and the order of absorbing wavelengths of RE doped ruffle TiO2 were the same as that of the results of calculation. The ratio of RE dopant was another important factor for the photo catalytic 'activity of RE doped rutile TiO2, and there was an optimal ratio of dopant. There was a constant for predigesting the calculation difficulty, respectively, which were 0.5mol.% and 100 mol^-1 under supposition. The band gap widths of RE doped rutile TiOz by DFT calculation were much larger than that by experiment. Finally, by transferring the calculation values to experiment values, it could be found and predicted that RE enlarged obviously the absorbing wavelengh of ruffle TiO2. In addition, the degree of RE ions edging out the Ti atom using the parameters of RE dements was computed.展开更多
The toughness of 31Mn2SiRE wear-resistance cast steel were increased by means of RE compound modification and high temperature austenitizing. The results show that the microstructures can be refined, needle and networ...The toughness of 31Mn2SiRE wear-resistance cast steel were increased by means of RE compound modification and high temperature austenitizing. The results show that the microstructures can be refined, needle and network ferrite are eliminated, the dislocation density and the quantity of dislocated martensite are increased remarkably, and the shape and distribution of inclusions are improved by the addition of RE. Therefore, the mechanical properties of the modified steel can be greatly increased, especially the toughness (αK) by 44%, yield strength (σs) by 10%, and elongation (δ5) by 42%.展开更多
Borosilicate glass with high rare earth content was fabricated by traditional method. The influence of glass compositions and rare earth content on absorption spectra was examined and discussed. With increasing Sm2O3 ...Borosilicate glass with high rare earth content was fabricated by traditional method. The influence of glass compositions and rare earth content on absorption spectra was examined and discussed. With increasing Sm2O3 content, the intensity of characteristic absorption peak is increased and the absorption peak is broadened. With increasing of the ratios of SiO2/B2O3 and Al2O3/SiO2, the broadening degree of absorption peak is increased. The experimental results provide basis for making special optical glasses which have the characteristics of high absorption for special wavelength laser and high transparence for visible light.展开更多
The growth dynamics of austenite grain was investigated in steel 9Cr2 Mo with different rare earth(RE)element addition.The results show that austenite grains of steel 9Cr2 Mo can be refined and their growth can be res...The growth dynamics of austenite grain was investigated in steel 9Cr2 Mo with different rare earth(RE)element addition.The results show that austenite grains of steel 9Cr2 Mo can be refined and their growth can be restrained by adding a certain amount of RE.According to the results,the n and Q were calculated and the mechanism of the refinement of austenite grains was discussed.展开更多
Observation and analysis with TEM show that the fine granular dispersed carbides in hypereutectoid zone of steel 20Cr2Ni4A are distributed in the matrix of large number of lath martensite after rare earth carburizing....Observation and analysis with TEM show that the fine granular dispersed carbides in hypereutectoid zone of steel 20Cr2Ni4A are distributed in the matrix of large number of lath martensite after rare earth carburizing. But while treating by conventional carburization and double quench hardening the retained carbides are finer and more dispersive, and its matrix is perfectly twin martersite. The different micrcotructures of matrix around carbide are formed with different kinds of carburization processes.展开更多
The effects of rare-earth La_2O_3 addition on microstructures and electrical properties of SrTiO_3 ceramics were investigated. Semiconductor SrTiO_3-based voltage-sensing and dielectric dual functional ceramics was pr...The effects of rare-earth La_2O_3 addition on microstructures and electrical properties of SrTiO_3 ceramics were investigated. Semiconductor SrTiO_3-based voltage-sensing and dielectric dual functional ceramics was prepared by a single step sintering technology in this study, and the effects of the content of La_2O_3 on characteristics of the product were discussed in terms of microstructures and electrical properties of materials. The results show that SrTiO_3-based ceramics doped with La_2O_3 exhibits more homogeneous grain distribution, greater grain size, and excellent voltage sensing and dielectric characteristics than those without La_2O_3 doping. The samples doped with 1 1% La_2O_3 were sintered at 1420 ℃ in N_2+C weak reducing atmosphere. The average grain size of the samples doped with La_2O_3 is 40 μm, the breakdown voltage of 19.7 V·mm^(-1), the nonlinear exponent of 7.2, and dielectric constant of 22500. The results reveal that final products are suitable to use in low operating voltage.展开更多
The iso-electric point of different rare earths (La, Ce, Y) doped anatase TiO2 was set out, and three organisms with different sur- face electrical properties (methylene blue trihydrate-positive electricity, methyl...The iso-electric point of different rare earths (La, Ce, Y) doped anatase TiO2 was set out, and three organisms with different sur- face electrical properties (methylene blue trihydrate-positive electricity, methyl orange-negative electricity, methyl red-neutral electricity) were selected as photodegradable models. The result showed that the photocatalytic activity of 0.5wt.%Y ions doped anatase TiO2 was better than those of the others. The relationship between Zeta (ξ) potential and the photocatalytic activity of different RE doped anatase TiO2 were also investigated. The Y-doped anatase TiO2 was found with the special two iso-electric points and three ξ potential values.展开更多
To investigate the effect of rare earth on size and distribution of TiB2 phase in aluminum alloy refiner,Al-5Ti-1B-RE master alloy was fabricated,and its microstructure and phase constitutions were investigated by the...To investigate the effect of rare earth on size and distribution of TiB2 phase in aluminum alloy refiner,Al-5Ti-1B-RE master alloy was fabricated,and its microstructure and phase constitutions were investigated by the combination of first principles calculations and experimental investigation.The calculated results reveal that Ce has the most effective modification ability due to the most positive adsorption energy and the largest charge transfer value compared with other rare earth elements.Results of experimental investigation indicate that the addition of rare earth in the Al-5Ti-1B alloys can greatly refine the particle size of TiB2,improve the distribution of particles and lead to better refinement effect than that of the Al-5Ti-1B alloys without rare earth.Moreover,Ce has the best optimization effect,which agrees well with the calculated results.展开更多
The effect of rare earth elements on quenching crack resistance of steel 9Cr2Mo was investigated by means of scanning electron microscopy (SEM) and optical microscopy. Experimental results show that, by adding RE elem...The effect of rare earth elements on quenching crack resistance of steel 9Cr2Mo was investigated by means of scanning electron microscopy (SEM) and optical microscopy. Experimental results show that, by adding RE elements to steel 9Cr2Mo, the number of quenching for crack initiation is increased. Meanwhile the propagation of quenching cracks is postponed and the paths of crack propagation are changed. Therefore, quenching crack resistance can be improved by adding RE elements to steel 9Cr2Mo.展开更多
The effect of rare earth elements on thermal shock resistance of cold roller steel 9Cr2Mo was investigated by means of X-ray diffractometry and optical microscopy. Experimental results show that the process of carbide...The effect of rare earth elements on thermal shock resistance of cold roller steel 9Cr2Mo was investigated by means of X-ray diffractometry and optical microscopy. Experimental results show that the process of carbide precipitation of heat effect zone is restrained by adding RE elements in steel 9Cr2Mo. Therefore, thermal shock resistance of this steel can be improved.展开更多
The rare earth nitrate complexes with 2,2′:4′,4″:2″,2 quaterpyridine (L) were prepared in ethylacetate. These new complexes with the general formula [RE(NO 3) 3L]·H 2O (RE = La, Pr, Eu, Tb, Er, Y) were ch...The rare earth nitrate complexes with 2,2′:4′,4″:2″,2 quaterpyridine (L) were prepared in ethylacetate. These new complexes with the general formula [RE(NO 3) 3L]·H 2O (RE = La, Pr, Eu, Tb, Er, Y) were characterized by elemental analysis, IR spectra, thermal analysis and molar conductance measurements. The luminescence properties of these complexes were also studied.展开更多
MoSi 2 and rare earths/MoSi 2 materials were prepared by mechanical alloying, IP and high temperature sintering techniques. Their room temperature properties such as bending strength, fracture toughness and elect...MoSi 2 and rare earths/MoSi 2 materials were prepared by mechanical alloying, IP and high temperature sintering techniques. Their room temperature properties such as bending strength, fracture toughness and electric conductivity were measured. The results show that rare earths have better strengthening and toughening effects on the MoSi 2 matrix than SiC does. The room temperature bending strength and fracture toughness of 0 9% rare earths/MoSi 2 material are 419 41 MPa and 5 81 MPa·m 1/2 , which have increased by 46% and 81% than the matrix, respectively. The strengthening mechanisms of rare earths/MoSi 2 are fine grain and dispersion strengthening. The toughening mechanisms are fine grain toughening, crack deflection and bowing toughening. Moreover, the effect of rare earths on the electric conductivity of MoSi 2 is much weaker than that of SiC whiskers. With the addition of 0 9% rare earths, the resistivity of MoSi 2 is only raised by about 13 9%.展开更多
文摘Adding rare earth oxide CeO_2 with variable valences to La_2O_3 formed a mixture of rare earth oxides. By means of dipping CeO_2, La_2O_3 and their mixture, whose carriers were all γ-Al_2O_3, were used as the catalyst for the reduction of SO_2 by CO. The activation process of this catalyst and the impact of temperature and reactant concentration on the activation process were investigated. Using X-ray diffraction, the structure characteristics of catalyst before and after reaction were analyzed to reveal the change of phase structure. The result shows that the rare earth oxide mixtures composing of CeO_2 and La_2O_3, as the catalyst for the reduction of SO_2 by CO, diminish activation temperature 50~100 ℃ less and have higher activity than a single oxide CeO_2 or La_2O_3. The reason possibl is that La_2O_3 goes into in the lattice of CeO_2 to form solid phase complex CeO_2-La_2O_3 and increases the capability of CeO_2-La_2O_3/γ-Al_2O_3 catalyst to store oxygen, which supplies the redox of CeO_2 reaction with a better condition. At the same time, elemental sulfur formed in the redox reaction impels La_2O_3 to be transformed to activation phase La_2O_2S in a lower temperature, which can be explained with the synergism between redox reaction and COS intermediate mechanism reaction.
基金Project supported by the National Science Foundation for Post-doctoral Scientists of China (Grant No.20090461331)
文摘Non-rare earth impurity doped Sr2CeO4:X (X :Zn, Hg, Al, Ag, Cr) phosphors are prepared by using the combustion method. The structural and photoluminescent properties of the as-prepared phosphors are investigated by X-ray diffraction (XRD) and photoluminescence at room temperature. Experimental results show that zinc addition and firing processing can effectively enhance the photoluminescence of Sr2CeO4 phosphors.
基金This work was financially supported by the Hi-Tech Research and Development Program (863 Program) of China (No. 2002AA302304)the National Natural Science Foundation of China (No. 60121101)the Education Department Foundation of Jiangsu Province (JHOl-
文摘TiO_2 sols modified by rare earth (RE) ions (Ce^(4+), Eu^(3+), or Nd^(3+))were prepared by coprecipitation-peptization method. The photocatalysis activity was studied byinvestigating the photodegradation effects of active brilliant red dye X-3B. It is found that TiO_2sols modified by Ce^(4+), Eu^(3+), or Nd^(3+) have the anatase crystalline structure, which areprepared at 70℃. All RE^(n+)-TiO_2 sol samples have uniform nanoparticles with similar morphology,which are homogenously distributed in aqueous colloidal systems. The particle sizes are 10, 8, and12 nm for Nd^(3+)-TiO_2, Eu^(3+)-TiO_2, and Ce^(4+)-TiO_2, respectively. The character of ultrafineand positive charge sol particles contributes to the good adsorption of X-3B dye molecule on thesurface of titania (about 30% X-3B adsorption amount). Experimental results exhibit thatRE^(n+)-TiO_2 sol photocatalysts have the capability to photodegrade X-3B under visible lightirradiation. Nd^(3+)-TiO_2 and Eu^(3+)-TiO_2 show higher photocatalytic activity than Ce^(4+)-TiO_2,which is due to the difference of standard redox potential of RE^(n+)/RE^((n-1)+). RE^(n+)-TiO_2sols demonstrate more excellent interfacial adsorption and photodegradation effects to X-3B thanP_(25) TiO_2 crystallites. Moreover, the degradation mechanism of X-3B is proposed as dyephotosensitization and electron scavenging by rare earth ions.
文摘Eight complexes of rare earth with 2 mercaptobenthiazole, RELCl 2·RE(OH) 3· x H 2O (L=2 mercaptobenthiazole, RE= La~Gd, Y, except for Pm, x =0, 2~4), were synthesized in unhydrous ethanol and characterized by elemental analyses, IR spectra and thermal analyses. The results show that the ligand is coordinated to the RE ion through both the exocyclic sulfur and the thiazole nitrogen. The vulcanizing properties of the La complex as accelerator were studied in the traditional tire rubber, which indicate that the cross linked rubber accelerated by the rare earth complex has good physical and dynamic mechanical properties by comparison.
文摘Some compounds of LiCo 1- x RE x O 2 (RE=rare earth elements and x =0.01~0.03) were prepared by doping rare earth elements to LiCoO 2 via solid state synthesis. The microstructure characteristics of the LiCo 1- x RE x O 2 were investigated by XRD. It was found that the lattice parameters c are increased and the lattice volumes are enlarged compared to that of LiCoO 2. Moreover, the performance of LiCo 1- x RE x O 2 as the cathode material in lithium ion battery is improved, especially LiCo 1- x Y x O 2 and LiCo 1- x La x O 2. The initial charge/discharge capacities of LiCo 0.99 Y 0.01 O 2 and LiCo 0.99 La 0.01 O 2 are 174/154 (mAh·g -1 ) and 159/149 (mAh·g -1 ) respectively, while those for LiCoO 2 working in the same way are only 139/131 (mAh·g -1 ).
基金the National Natural Science Foundation of China (50674016)the National High Technology Research and Develop-ment Program of China (863 Program) ( 2006AA06Z123)
文摘The extraction of Nd^3+ and Sm^3+, including the extraction and stripping capability as well as the separation effect of Nd^3+ or Sm^3+, from a sulfuric acid medium, by mixtures of di-(2-ethylhexyl) phosphoric acid (HDEHP, H2A2(0)) and 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (HEH/EHP, H2L2(0)) were studied. The distribution ratios and synergistic coefficients of Nd^3+ and Sm^3+ in different acidities were also determined. A synergistic extractive effect was found when HDEHP and HEH/EHP were used as mixed extractants for Sm^3+ or Nd^3+. The chemical compositions of the extracted complex were determined as Nd.(HA2)2-HL2 and Sm.(HA2)2-HL2. The extraction equilibrium constants, enthalpy change, and entropy change of the extraction reaction were also determined.
基金Project supported by the National Natural Science Foundation of China (50574031)Scientific Research Special Foundation of Doctor Subject of Chinese University (20030145015)
文摘The decomposed process of bastnaesite, monazite and mixed rare earth concentrate in CaO-CaCl-CaCl2 was studied by means of TG-DTA method. The relationship among decomposition ratio, roasting temperature, and CaO-NaCl addition was studied by the quadratic regression orthogonal analysis, and then the regression equation was obtained. Through analysis, the optimum process conditions of mixed rare earth concentrate decomposed by CaO-CaCl-CaCl2 were obtained as follows: roasting temperature: 700℃, CaO addition: 15%, NaCl-CaCl2 addition: 10%, roasting time: 60 min, the decomposition ratio: 91.3%.
基金supported by the Education Commission of Sichuan Province of China (2006A099)the National Defense Basic Research Foundation of China (A3120080126)
文摘The density of states (DOS) of 17 kinds of rare earths (RE) doped rutile TiO2 was by using first-principles density functional theory (DFT) calculation. The band gap widths of RE doped futile TiO2 were important factors for altering their absorbing wavelengths. The results show that RE ions could obviously reduce the band gap widths and form of energy of ruffle TiO2 except Lu, Y, Yb and Sc, and the order of absorbing wavelengths of RE doped ruffle TiO2 were the same as that of the results of calculation. The ratio of RE dopant was another important factor for the photo catalytic 'activity of RE doped rutile TiO2, and there was an optimal ratio of dopant. There was a constant for predigesting the calculation difficulty, respectively, which were 0.5mol.% and 100 mol^-1 under supposition. The band gap widths of RE doped rutile TiOz by DFT calculation were much larger than that by experiment. Finally, by transferring the calculation values to experiment values, it could be found and predicted that RE enlarged obviously the absorbing wavelengh of ruffle TiO2. In addition, the degree of RE ions edging out the Ti atom using the parameters of RE dements was computed.
基金Project supported by the Innovation Fund for Outstanding Scholar of Henan Province (0621000600)
文摘The toughness of 31Mn2SiRE wear-resistance cast steel were increased by means of RE compound modification and high temperature austenitizing. The results show that the microstructures can be refined, needle and network ferrite are eliminated, the dislocation density and the quantity of dislocated martensite are increased remarkably, and the shape and distribution of inclusions are improved by the addition of RE. Therefore, the mechanical properties of the modified steel can be greatly increased, especially the toughness (αK) by 44%, yield strength (σs) by 10%, and elongation (δ5) by 42%.
文摘Borosilicate glass with high rare earth content was fabricated by traditional method. The influence of glass compositions and rare earth content on absorption spectra was examined and discussed. With increasing Sm2O3 content, the intensity of characteristic absorption peak is increased and the absorption peak is broadened. With increasing of the ratios of SiO2/B2O3 and Al2O3/SiO2, the broadening degree of absorption peak is increased. The experimental results provide basis for making special optical glasses which have the characteristics of high absorption for special wavelength laser and high transparence for visible light.
文摘The growth dynamics of austenite grain was investigated in steel 9Cr2 Mo with different rare earth(RE)element addition.The results show that austenite grains of steel 9Cr2 Mo can be refined and their growth can be restrained by adding a certain amount of RE.According to the results,the n and Q were calculated and the mechanism of the refinement of austenite grains was discussed.
文摘Observation and analysis with TEM show that the fine granular dispersed carbides in hypereutectoid zone of steel 20Cr2Ni4A are distributed in the matrix of large number of lath martensite after rare earth carburizing. But while treating by conventional carburization and double quench hardening the retained carbides are finer and more dispersive, and its matrix is perfectly twin martersite. The different micrcotructures of matrix around carbide are formed with different kinds of carburization processes.
基金Project supported by Science and Technology Foundation of Yunnan Province (2002GG-09)
文摘The effects of rare-earth La_2O_3 addition on microstructures and electrical properties of SrTiO_3 ceramics were investigated. Semiconductor SrTiO_3-based voltage-sensing and dielectric dual functional ceramics was prepared by a single step sintering technology in this study, and the effects of the content of La_2O_3 on characteristics of the product were discussed in terms of microstructures and electrical properties of materials. The results show that SrTiO_3-based ceramics doped with La_2O_3 exhibits more homogeneous grain distribution, greater grain size, and excellent voltage sensing and dielectric characteristics than those without La_2O_3 doping. The samples doped with 1 1% La_2O_3 were sintered at 1420 ℃ in N_2+C weak reducing atmosphere. The average grain size of the samples doped with La_2O_3 is 40 μm, the breakdown voltage of 19.7 V·mm^(-1), the nonlinear exponent of 7.2, and dielectric constant of 22500. The results reveal that final products are suitable to use in low operating voltage.
基金Education Commission of Sichuan Province of China (2006A099)
文摘The iso-electric point of different rare earths (La, Ce, Y) doped anatase TiO2 was set out, and three organisms with different sur- face electrical properties (methylene blue trihydrate-positive electricity, methyl orange-negative electricity, methyl red-neutral electricity) were selected as photodegradable models. The result showed that the photocatalytic activity of 0.5wt.%Y ions doped anatase TiO2 was better than those of the others. The relationship between Zeta (ξ) potential and the photocatalytic activity of different RE doped anatase TiO2 were also investigated. The Y-doped anatase TiO2 was found with the special two iso-electric points and three ξ potential values.
基金supported by the Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No.2021MS05049)the Youth Fund Project of State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization(Grant No.2021Z2348)the Project of China North Rare Earth(Group)High-tech Co.,Ltd.(Grant No.2020H2177).
文摘To investigate the effect of rare earth on size and distribution of TiB2 phase in aluminum alloy refiner,Al-5Ti-1B-RE master alloy was fabricated,and its microstructure and phase constitutions were investigated by the combination of first principles calculations and experimental investigation.The calculated results reveal that Ce has the most effective modification ability due to the most positive adsorption energy and the largest charge transfer value compared with other rare earth elements.Results of experimental investigation indicate that the addition of rare earth in the Al-5Ti-1B alloys can greatly refine the particle size of TiB2,improve the distribution of particles and lead to better refinement effect than that of the Al-5Ti-1B alloys without rare earth.Moreover,Ce has the best optimization effect,which agrees well with the calculated results.
文摘The effect of rare earth elements on quenching crack resistance of steel 9Cr2Mo was investigated by means of scanning electron microscopy (SEM) and optical microscopy. Experimental results show that, by adding RE elements to steel 9Cr2Mo, the number of quenching for crack initiation is increased. Meanwhile the propagation of quenching cracks is postponed and the paths of crack propagation are changed. Therefore, quenching crack resistance can be improved by adding RE elements to steel 9Cr2Mo.
文摘The effect of rare earth elements on thermal shock resistance of cold roller steel 9Cr2Mo was investigated by means of X-ray diffractometry and optical microscopy. Experimental results show that the process of carbide precipitation of heat effect zone is restrained by adding RE elements in steel 9Cr2Mo. Therefore, thermal shock resistance of this steel can be improved.
文摘The rare earth nitrate complexes with 2,2′:4′,4″:2″,2 quaterpyridine (L) were prepared in ethylacetate. These new complexes with the general formula [RE(NO 3) 3L]·H 2O (RE = La, Pr, Eu, Tb, Er, Y) were characterized by elemental analysis, IR spectra, thermal analysis and molar conductance measurements. The luminescence properties of these complexes were also studied.
文摘MoSi 2 and rare earths/MoSi 2 materials were prepared by mechanical alloying, IP and high temperature sintering techniques. Their room temperature properties such as bending strength, fracture toughness and electric conductivity were measured. The results show that rare earths have better strengthening and toughening effects on the MoSi 2 matrix than SiC does. The room temperature bending strength and fracture toughness of 0 9% rare earths/MoSi 2 material are 419 41 MPa and 5 81 MPa·m 1/2 , which have increased by 46% and 81% than the matrix, respectively. The strengthening mechanisms of rare earths/MoSi 2 are fine grain and dispersion strengthening. The toughening mechanisms are fine grain toughening, crack deflection and bowing toughening. Moreover, the effect of rare earths on the electric conductivity of MoSi 2 is much weaker than that of SiC whiskers. With the addition of 0 9% rare earths, the resistivity of MoSi 2 is only raised by about 13 9%.