With the introduction of Poisson's ratio in the expression of Young's modulus,nearly all the theoretical values of the various elastic moduli for the alkaline earth metals and rare earth elements can be greatl...With the introduction of Poisson's ratio in the expression of Young's modulus,nearly all the theoretical values of the various elastic moduli for the alkaline earth metals and rare earth elements can be greatly refined, with the single exception of the theoreticalvalue of Young's modulus for Pr which is slightly increased This points to the validityof the new theory, that the bulk modulus is independent of the Poisson's ratio, and further that the valency electron structures of solids as determined by Yu's theory are correct.展开更多
The catalytic activity of Perovskite-type mixed oxides (LaCoO3, PrCoO3 and SmCoO3) for the reduction of cyclohexanone to cyclohexanol with 2-propanol (Meerwein-PonndorfVerley reduction) has been studied. The data have...The catalytic activity of Perovskite-type mixed oxides (LaCoO3, PrCoO3 and SmCoO3) for the reduction of cyclohexanone to cyclohexanol with 2-propanol (Meerwein-PonndorfVerley reduction) has been studied. The data have been correlated with the surface electron donor properties of these mixed oxides展开更多
Five types of KNO_3-NH_4VO_3-rare earth metal nitrate(K-V-rare earth metal) catalysts supported on a-porous alumina ceramic substrates were prepared by a coating method. All the catalysts were characterized by X-ray...Five types of KNO_3-NH_4VO_3-rare earth metal nitrate(K-V-rare earth metal) catalysts supported on a-porous alumina ceramic substrates were prepared by a coating method. All the catalysts were characterized by X-ray diffraction and thermogravimetry/differential scanning calorimetry. Catalytic activities were evaluated by a soot oxidation reaction using a temperature-programmed reaction system. The experimental results show that the addition of rare earth metal compound could obviously improve the catalytic activities of the K-V-based catalysts. The proper ratio of K-V-rare earth metal catalysts can not only lower the soot onset ignition temperature, but also quicken the soot oxidation rate. The crystalline phases formed by K, V, and rare earth metal are stable.展开更多
New alkaline earth metal cryptates [ML](NO3)2 ·2H2O (M=Ca^2+, Sr^2+, Ba^2+; L = 1, 4,12,15,18, 26, 31, 39, 42, 43, 44-undecaazapentacyclo- [ 13.13.13.1^6,10 .1^20,24 .1^33,37 ]-tetratetraconta -4, 6, 8, 10...New alkaline earth metal cryptates [ML](NO3)2 ·2H2O (M=Ca^2+, Sr^2+, Ba^2+; L = 1, 4,12,15,18, 26, 31, 39, 42, 43, 44-undecaazapentacyclo- [ 13.13.13.1^6,10 .1^20,24 .1^33,37 ]-tetratetraconta -4, 6, 8, 10(44), 11, 18, 20, 22, 24(43), 25, 31, 33, 35, 37(42), 38-pentadecaene) were synthesized by [2 + 3 ] template condensation of tris(2-aminoethyl) amine with 2, 6-diformylpyridine, and then by transmetallation reactions of the calcium cryptate [CaL] (NO3)2·2H2O with corresponding lanthanide ions; three lanthanide cryptates [ LnL] (NO)3·3H2O (Ln = Eu, Gd, Tb) were synthesized and characterized by physical methods. The crystal structure of the terbium cryptate [TbL] (NO)3·3H2O was studied by X-ray analysis. The central atom was coordinated by three pyridyl and six imino nitrogen atoms and exhibited a distorted tricapped trigonal prismatic coordination geometry.展开更多
Waste aluminate rare earth phosphor is an important rare earth elements (REEs) secondary resource, which mainly consists of BaMgAl1()O|7:Eu2+(BAM) and CeMgAl11O19:Tb^3+(CMAT). Alkaline fusion process is widely used to...Waste aluminate rare earth phosphor is an important rare earth elements (REEs) secondary resource, which mainly consists of BaMgAl1()O|7:Eu2+(BAM) and CeMgAl11O19:Tb^3+(CMAT). Alkaline fusion process is widely used to recycle REEs from aluminate phosphor, but the related theory remains imperfect. In this paper, a series of alkaline fusion experiments of CMAT were performed to describe the phase change law of CMAT reactions. Based on comprehensive analysis, cation-oxoanion synergies theory (COST) was proposed to explain the aluminate phosphor structure damage. On the mirror plane of aluminate phosphor crystal structure, alkali metal cations (Na^+,K^+) would substitute rare earth ions, while free oxoanion (OH^-, CO3^2-, O2^2-) can combine with rare earth ions. These two ionic forces ensure that rare earth ions can be substituted by cations. Then, the structure is decomposed. Morphological analysis shows that observable expression of COST can be described by shrinking core model after simplification. Reaction rate constant calculated indicates that the reaction degree is nanometers per second. COST provides a more complete mechanism, and it can help improve rare earth recycling technology furtherly.展开更多
Activated carbon(AC)has been widely used in the removal of SO_(2) from flue gas owing to its well-developed pore structure and abundant functional groups.Herein,the effect of alkali/alkaline earth metals on sulfur mig...Activated carbon(AC)has been widely used in the removal of SO_(2) from flue gas owing to its well-developed pore structure and abundant functional groups.Herein,the effect of alkali/alkaline earth metals on sulfur migration was investigated based on the dynamic adsorption and temperature programmed desorption experiment.The adsorption and desorption properties of six types of AC(three commercial and three laboratory-made)were carried out on a fixed-bed experimental device,and the physical and chemical properties of samples were determined by X-ray fluorescence,X-ray diffraction,scanning electron microscopy/energy dispersive X-ray,and X-ray photoelectron spectroscopy analysis.The experimental results showed that the adsorbed SO_(2) cannot be completely desorbed by increasing the regeneration temperature(350-850℃),while the SO_(2) fixed in the AC combines with the Ca-based minerals in the ash to form a stable sulfate.For different samples,higher ash content,higher CaO content in the ash and a more developed pore structure lead to a higher SO_(2) fixation rate.Moreover,the multiple adsorption-desorption cycles experiment showed that the effect of SO_(2) fixation is mainly reflected in the first cycle,after which the adsorption and desorption amount are approximately the same.This study elucidates the effect of alkali/alkaline earth metals on the adsorption-desorption cycle of AC,which provides a deeper understanding of sulfur migration in the AC flue gas desulfurization process.展开更多
A different method was employed for the preparation of a metal supported perovskite catalyst for the catalytic combustion of methane.The prepared metallic catalysts were characterized by means of X-ray diffractometer(...A different method was employed for the preparation of a metal supported perovskite catalyst for the catalytic combustion of methane.The prepared metallic catalysts were characterized by means of X-ray diffractometer(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and also by ultrasonic and thermal shock tests and catalytic activity.It was found that the process factors during the preparation,e.g.the preparation of the catalyst precursor and the coating slurry,the calcination te...展开更多
The applicability of Ce and Y as promising candidate elements to form irreversible traps in weld metal was investigated by thermal desorption spectroscopy(TDS) with gas chromatography(GC). The precise nature of the pr...The applicability of Ce and Y as promising candidate elements to form irreversible traps in weld metal was investigated by thermal desorption spectroscopy(TDS) with gas chromatography(GC). The precise nature of the precipitate particles newly formed in the weld metal by the addition of Ce and Y to a certain alloy system was characterized. Moreover,the hydrogen trapping efficiency expressed as the reduction of the diffusible hydrogen in the weld metal was analyzed. The results showed that the addition of Ce and/or Y to this alloy system led to the formation of a mixed type of(Ce,Ti)-based oxide,(Y,Ni)-based carbide,or(Ce,Y,Ti)-based oxide particles. Because of the high activation energy of the mixed type of particles(≥ 150 k J/mol),the trapping efficiency for hydrogen was considered to be sufficiently high to effectively reduce the diffusible hydrogen content.展开更多
The roles of different point defects in persistent luminescence of SrAl2O4:Eu,Dy phosphors were investigated. The research results showed that Dyer plays an important role in the persistent luminescence of SrA1EO4:E...The roles of different point defects in persistent luminescence of SrAl2O4:Eu,Dy phosphors were investigated. The research results showed that Dyer plays an important role in the persistent luminescence of SrA1EO4:Eu, Dy phosphors. It can serve as the electron trap of suitable depth for persistent luminescence. V~ does not serve as the electron trap of suitable depth, but its existence can increase the depth of electron traps. There is interaction between the Dy^3+( DySr ) and the Eu^2+(Eu^x Sr ), and only if the distance between the Dy^3+(DySr) and the Eu^2+ (Eu^x Sr) is close enough, the Dyer can work as an effective electron trap. The point defect of V" Sr can be hole trap, but the change of its density in crystal matrix does not arouse the obvious change of persistent luminescence.展开更多
With the rapid consumption of fossil fuels and the resulting environmental problems,researchers are working to find sustainable alternative energy and energy storage and conversion methods.Transition metal sulfur comp...With the rapid consumption of fossil fuels and the resulting environmental problems,researchers are working to find sustainable alternative energy and energy storage and conversion methods.Transition metal sulfur compounds have attracted extensive attention due to their excellent electrical conductivity,low cost,adjustable components and good electrocatalytic performance.As an alternative to noble metal catalysts,they have emerged as a promising electrocatalyst.However,their low catalytic activity and poor stability limit their large-scale practical applications.Rare earth elements,known as industrial vitamins,are widely used in various fields due to their special redox properties,oxygen affinity and electronic structure.Therefore,the construction of rare earth promoted transition metal sulfides is of far-reaching significance for the development of catalysts.Here,we review the applications of various rare earth promoted transition metal sulfides in energy storage and conversion in recent years,which focuses on three ways in rare earth promoted transition metal sulfide,including doping,interfacial modification engineering and structural facilitation.As well,these materials are used in electrochemical reactions such as OER,HER,ORR,CO_(2)RR,and so on,in order to explore the important role of rare earth in the field of electrocatalysis,the future challenges and opportunities.展开更多
文摘With the introduction of Poisson's ratio in the expression of Young's modulus,nearly all the theoretical values of the various elastic moduli for the alkaline earth metals and rare earth elements can be greatly refined, with the single exception of the theoreticalvalue of Young's modulus for Pr which is slightly increased This points to the validityof the new theory, that the bulk modulus is independent of the Poisson's ratio, and further that the valency electron structures of solids as determined by Yu's theory are correct.
文摘The catalytic activity of Perovskite-type mixed oxides (LaCoO3, PrCoO3 and SmCoO3) for the reduction of cyclohexanone to cyclohexanol with 2-propanol (Meerwein-PonndorfVerley reduction) has been studied. The data have been correlated with the surface electron donor properties of these mixed oxides
基金Funded by the National Natural Science Foundation of China(Nos.21606140,21776147,and 51373086)the Science-Technology Program in Higher Education Institutions of Shandong Province,China(J11LD05)the Qingdao Municipal Science and Technology Commission,China(13-1-4-154-jch)
文摘Five types of KNO_3-NH_4VO_3-rare earth metal nitrate(K-V-rare earth metal) catalysts supported on a-porous alumina ceramic substrates were prepared by a coating method. All the catalysts were characterized by X-ray diffraction and thermogravimetry/differential scanning calorimetry. Catalytic activities were evaluated by a soot oxidation reaction using a temperature-programmed reaction system. The experimental results show that the addition of rare earth metal compound could obviously improve the catalytic activities of the K-V-based catalysts. The proper ratio of K-V-rare earth metal catalysts can not only lower the soot onset ignition temperature, but also quicken the soot oxidation rate. The crystalline phases formed by K, V, and rare earth metal are stable.
基金Project supported by the National Natural Science Foundation of China (20671075)the Natural Science Foundation of Hubei Province (2005ABA021)China Postdoctoral Science Foundation (20060390858)
文摘New alkaline earth metal cryptates [ML](NO3)2 ·2H2O (M=Ca^2+, Sr^2+, Ba^2+; L = 1, 4,12,15,18, 26, 31, 39, 42, 43, 44-undecaazapentacyclo- [ 13.13.13.1^6,10 .1^20,24 .1^33,37 ]-tetratetraconta -4, 6, 8, 10(44), 11, 18, 20, 22, 24(43), 25, 31, 33, 35, 37(42), 38-pentadecaene) were synthesized by [2 + 3 ] template condensation of tris(2-aminoethyl) amine with 2, 6-diformylpyridine, and then by transmetallation reactions of the calcium cryptate [CaL] (NO3)2·2H2O with corresponding lanthanide ions; three lanthanide cryptates [ LnL] (NO)3·3H2O (Ln = Eu, Gd, Tb) were synthesized and characterized by physical methods. The crystal structure of the terbium cryptate [TbL] (NO)3·3H2O was studied by X-ray analysis. The central atom was coordinated by three pyridyl and six imino nitrogen atoms and exhibited a distorted tricapped trigonal prismatic coordination geometry.
基金financially supported by the National Natural Science Foundation of China (Nos. U1360202, 51472030, 51672024 and 515102014)
文摘Waste aluminate rare earth phosphor is an important rare earth elements (REEs) secondary resource, which mainly consists of BaMgAl1()O|7:Eu2+(BAM) and CeMgAl11O19:Tb^3+(CMAT). Alkaline fusion process is widely used to recycle REEs from aluminate phosphor, but the related theory remains imperfect. In this paper, a series of alkaline fusion experiments of CMAT were performed to describe the phase change law of CMAT reactions. Based on comprehensive analysis, cation-oxoanion synergies theory (COST) was proposed to explain the aluminate phosphor structure damage. On the mirror plane of aluminate phosphor crystal structure, alkali metal cations (Na^+,K^+) would substitute rare earth ions, while free oxoanion (OH^-, CO3^2-, O2^2-) can combine with rare earth ions. These two ionic forces ensure that rare earth ions can be substituted by cations. Then, the structure is decomposed. Morphological analysis shows that observable expression of COST can be described by shrinking core model after simplification. Reaction rate constant calculated indicates that the reaction degree is nanometers per second. COST provides a more complete mechanism, and it can help improve rare earth recycling technology furtherly.
基金the National Key R&D Program of China(No.2017YFB0602901)。
文摘Activated carbon(AC)has been widely used in the removal of SO_(2) from flue gas owing to its well-developed pore structure and abundant functional groups.Herein,the effect of alkali/alkaline earth metals on sulfur migration was investigated based on the dynamic adsorption and temperature programmed desorption experiment.The adsorption and desorption properties of six types of AC(three commercial and three laboratory-made)were carried out on a fixed-bed experimental device,and the physical and chemical properties of samples were determined by X-ray fluorescence,X-ray diffraction,scanning electron microscopy/energy dispersive X-ray,and X-ray photoelectron spectroscopy analysis.The experimental results showed that the adsorbed SO_(2) cannot be completely desorbed by increasing the regeneration temperature(350-850℃),while the SO_(2) fixed in the AC combines with the Ca-based minerals in the ash to form a stable sulfate.For different samples,higher ash content,higher CaO content in the ash and a more developed pore structure lead to a higher SO_(2) fixation rate.Moreover,the multiple adsorption-desorption cycles experiment showed that the effect of SO_(2) fixation is mainly reflected in the first cycle,after which the adsorption and desorption amount are approximately the same.This study elucidates the effect of alkali/alkaline earth metals on the adsorption-desorption cycle of AC,which provides a deeper understanding of sulfur migration in the AC flue gas desulfurization process.
基金supported by the Ministry of Science and Technology of Beijing (20081D0500500142)
文摘A different method was employed for the preparation of a metal supported perovskite catalyst for the catalytic combustion of methane.The prepared metallic catalysts were characterized by means of X-ray diffractometer(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and also by ultrasonic and thermal shock tests and catalytic activity.It was found that the process factors during the preparation,e.g.the preparation of the catalyst precursor and the coating slurry,the calcination te...
文摘The applicability of Ce and Y as promising candidate elements to form irreversible traps in weld metal was investigated by thermal desorption spectroscopy(TDS) with gas chromatography(GC). The precise nature of the precipitate particles newly formed in the weld metal by the addition of Ce and Y to a certain alloy system was characterized. Moreover,the hydrogen trapping efficiency expressed as the reduction of the diffusible hydrogen in the weld metal was analyzed. The results showed that the addition of Ce and/or Y to this alloy system led to the formation of a mixed type of(Ce,Ti)-based oxide,(Y,Ni)-based carbide,or(Ce,Y,Ti)-based oxide particles. Because of the high activation energy of the mixed type of particles(≥ 150 k J/mol),the trapping efficiency for hydrogen was considered to be sufficiently high to effectively reduce the diffusible hydrogen content.
基金This study is financially supported by the Jiangxi University of Finance and Economy (Project No. 0421205) Jiangxi Provincial Department of Education (Project No. (2007) 260)
文摘The roles of different point defects in persistent luminescence of SrAl2O4:Eu,Dy phosphors were investigated. The research results showed that Dyer plays an important role in the persistent luminescence of SrA1EO4:Eu, Dy phosphors. It can serve as the electron trap of suitable depth for persistent luminescence. V~ does not serve as the electron trap of suitable depth, but its existence can increase the depth of electron traps. There is interaction between the Dy^3+( DySr ) and the Eu^2+(Eu^x Sr ), and only if the distance between the Dy^3+(DySr) and the Eu^2+ (Eu^x Sr) is close enough, the Dyer can work as an effective electron trap. The point defect of V" Sr can be hole trap, but the change of its density in crystal matrix does not arouse the obvious change of persistent luminescence.
基金support from the National Natural Science Foundation of China(Nos.21922105,21931001 and 22271124)the National Key R&D Program of China(2021YFA1501101)+2 种基金Special Fund Project of Guiding Scientific and Technological Innovation Development of Gansu Province(2019zX-04)the 111 Project(B20027)support by the Fundamental Research Funds for the Central Universities(lzujbky-2021-pd04,Izujbky-2021-it12 and Izujbky-2021-37).
文摘With the rapid consumption of fossil fuels and the resulting environmental problems,researchers are working to find sustainable alternative energy and energy storage and conversion methods.Transition metal sulfur compounds have attracted extensive attention due to their excellent electrical conductivity,low cost,adjustable components and good electrocatalytic performance.As an alternative to noble metal catalysts,they have emerged as a promising electrocatalyst.However,their low catalytic activity and poor stability limit their large-scale practical applications.Rare earth elements,known as industrial vitamins,are widely used in various fields due to their special redox properties,oxygen affinity and electronic structure.Therefore,the construction of rare earth promoted transition metal sulfides is of far-reaching significance for the development of catalysts.Here,we review the applications of various rare earth promoted transition metal sulfides in energy storage and conversion in recent years,which focuses on three ways in rare earth promoted transition metal sulfide,including doping,interfacial modification engineering and structural facilitation.As well,these materials are used in electrochemical reactions such as OER,HER,ORR,CO_(2)RR,and so on,in order to explore the important role of rare earth in the field of electrocatalysis,the future challenges and opportunities.