In this work, the influence of trivalent rare-earth dopants(Sm and La) on the structure-activity properties of CeO2 was thoroughly studied for diesel soot oxidation. For this, an optimized 40% of Sm and La was incor...In this work, the influence of trivalent rare-earth dopants(Sm and La) on the structure-activity properties of CeO2 was thoroughly studied for diesel soot oxidation. For this, an optimized 40% of Sm and La was incorporated into the CeO2 using a facile coprecipitation method from ultra-high dilute aqueous solutions. A systematic physicochemical characterization was carried out using X-ray diffraction(XRD), transmission electron microscopy(TEM), Brumauer-Emmett-teller method(BET) surface area, X-ray photoelectron spectroscopy(XPS), Raman, and H2-temperature programmed reduction(TPR) techniques. The soot oxidation efficiency of the catalysts was investigated using a thermogravimetric method. The XRD results suggested the formation of nanocrystalline single phase CeO2-Sm2O3 and CeO2-La2O3 solid solutions. The Sm- and La-doped CeO2 materials exhibited smaller crystallite size and higher BET surface area compared with the pure CeO2. Owing to the difference in the oxidation states of the dopants(Sm3+ and La3+) and the Ce4+, a number of oxygen vacancies were generated in CeO2-Sm2O3 and CeO2-La2O3 samples. The H2-TPR studies evidenced the improved reducible nature of the CeO2-Sm2O3 and CeO2-La2O3 samples compared with the CeO2. It was found that the addition of Sm and La to the CeO2 outstandingly enhanced its catalytic efficiency for the oxidation of diesel soot. The observed 50% soot conversion temperatures for the CeO2-Sm2O3, CeO2-La2O3 and CeO2 were ~790, 843 and 864 K(loose contact), respectively, and similar activity order was also found under the tight contact condition. The high soot oxidation efficacy of the CeO2-Sm2O3 sample was attributed to numerous catalytically favourable properties, like smaller crystallite size, larger surface area, abundant oxygen vacancies, and superior reducible nature.展开更多
A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO ...A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO and C_3H_8. The ratio of catalyst composition on catalytic activities for NH_3-SCR was optimized, which reveals that the molar ratio of Ti/Si was 9:1 and the catalyst containing 1.5 wt% CeO_2 and 12 wt% Mn-Mo-W-O_x exhibits the best catalytic performances. These samples were characterized by XRD, N_2-BET, Py-IR, NH_3-TPD, SEM/element mapping, H_2-TPR and XPS, respectively. Results show that the optimal catalyst exhibits more than 99% NO conversion, 86% CO conversion and 100% C_3H_8 conversion under GHSV of 5000 h^(-1). In addition, the GHSV has little influence on removal of NO when it is less than 15,000 h^(-1). Furthermore, the addition of CeO_2 will enhance the surface acidity, increase Mn^(4+)concentration and inhibit the grain growth, which are favorable for the excellent catalytic performance.Anyway,the 1.5 wt% CeO_2-12 wt% Mn-Mo-W-O_x/TiO_2-SiO_2 possesses outstanding redox properties,abundant acid sites and high Mn^(4+) concentration, which provide a guarantee for synergistic catalytic removal of CO, NO and HC.展开更多
Fe_3O_4@SiO_2 magnetic nanoparticles functionalized with mesoporous cerium oxide(Fe_3O_4@SiO_2@mCeO_2) was fabricated as a novel adsorbent to remove phosphate from water. The prepared adsorbent was characterized by ...Fe_3O_4@SiO_2 magnetic nanoparticles functionalized with mesoporous cerium oxide(Fe_3O_4@SiO_2@mCeO_2) was fabricated as a novel adsorbent to remove phosphate from water. The prepared adsorbent was characterized by X-ray diffractometry(XRD), transmission electron microscopy(TEM), nitrogen adsorption-desorption and vibrating sample magnetometry(VSM), and its phosphate removal performance was investigated through the batch adsorption studies. Characterization results confirmed that mesoporous cerium oxide was successfully assembled on the surface of Fe_3O_4@SiO_2 nanoparticles, and the synthesized adsorbent possessed a typical core-shell structure with a BET surface area of 195 m^2/g, accessible mesopores of 2.6 nm, and the saturation magnetization of 21.11 emu/g. The newly developed adsorbent had an excellent performance in adsorbing phosphate, and its maximum adsorption capacity calculated from the Langmuir model was 64.07 mg/g. The adsorption was fast, and the kinetic data could be best fitted with the pseudo-second-order kinetic model. The phosphate removal decreased with the increase of solution pH(2 to 10), while the higher ionic strength slightly promoted the phosphate adsorption. The presence of Cl~– and SO^(2–)_4 could enhance the adsorption of phosphate whereas HCO~–_ 3 had interfering effect on the phosphate adsorption. The adsorption mechanism was studied by analyzing Zeta potential and FTIR spectroscopy, and the results indicated that the replacement of the surface hydroxyl groups by phosphate ions with the formation of inner-sphere complex played a key role in the phosphate adsorption. The spent adsorbent could be quickly separated from aqueous solution with the assistance of the external magnetic field, and the adsorbed phosphate could be effectively desorbed using a 1 mol/L NaOH solution.展开更多
基金supported by the Department of Science and Technology,New Delhi,under SERB Scheme(SB/S1/PC-106/2012)
文摘In this work, the influence of trivalent rare-earth dopants(Sm and La) on the structure-activity properties of CeO2 was thoroughly studied for diesel soot oxidation. For this, an optimized 40% of Sm and La was incorporated into the CeO2 using a facile coprecipitation method from ultra-high dilute aqueous solutions. A systematic physicochemical characterization was carried out using X-ray diffraction(XRD), transmission electron microscopy(TEM), Brumauer-Emmett-teller method(BET) surface area, X-ray photoelectron spectroscopy(XPS), Raman, and H2-temperature programmed reduction(TPR) techniques. The soot oxidation efficiency of the catalysts was investigated using a thermogravimetric method. The XRD results suggested the formation of nanocrystalline single phase CeO2-Sm2O3 and CeO2-La2O3 solid solutions. The Sm- and La-doped CeO2 materials exhibited smaller crystallite size and higher BET surface area compared with the pure CeO2. Owing to the difference in the oxidation states of the dopants(Sm3+ and La3+) and the Ce4+, a number of oxygen vacancies were generated in CeO2-Sm2O3 and CeO2-La2O3 samples. The H2-TPR studies evidenced the improved reducible nature of the CeO2-Sm2O3 and CeO2-La2O3 samples compared with the CeO2. It was found that the addition of Sm and La to the CeO2 outstandingly enhanced its catalytic efficiency for the oxidation of diesel soot. The observed 50% soot conversion temperatures for the CeO2-Sm2O3, CeO2-La2O3 and CeO2 were ~790, 843 and 864 K(loose contact), respectively, and similar activity order was also found under the tight contact condition. The high soot oxidation efficacy of the CeO2-Sm2O3 sample was attributed to numerous catalytically favourable properties, like smaller crystallite size, larger surface area, abundant oxygen vacancies, and superior reducible nature.
基金Project supported by the National Key Research and Development Program of China(2016YFC0205500)National Natural Science Foundation of China(51772149)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO and C_3H_8. The ratio of catalyst composition on catalytic activities for NH_3-SCR was optimized, which reveals that the molar ratio of Ti/Si was 9:1 and the catalyst containing 1.5 wt% CeO_2 and 12 wt% Mn-Mo-W-O_x exhibits the best catalytic performances. These samples were characterized by XRD, N_2-BET, Py-IR, NH_3-TPD, SEM/element mapping, H_2-TPR and XPS, respectively. Results show that the optimal catalyst exhibits more than 99% NO conversion, 86% CO conversion and 100% C_3H_8 conversion under GHSV of 5000 h^(-1). In addition, the GHSV has little influence on removal of NO when it is less than 15,000 h^(-1). Furthermore, the addition of CeO_2 will enhance the surface acidity, increase Mn^(4+)concentration and inhibit the grain growth, which are favorable for the excellent catalytic performance.Anyway,the 1.5 wt% CeO_2-12 wt% Mn-Mo-W-O_x/TiO_2-SiO_2 possesses outstanding redox properties,abundant acid sites and high Mn^(4+) concentration, which provide a guarantee for synergistic catalytic removal of CO, NO and HC.
基金supported by Natural Science Foundation of China(21706178)"utilization of low rank coal"Strategic Leading Special Fund,Strategic Leading Special Fund of CAS(XDA-07070800,XDA-07070400)the Opening Foundation of State Key Laboratory of Coal Conversion(J16-17-602)
文摘Fe_3O_4@SiO_2 magnetic nanoparticles functionalized with mesoporous cerium oxide(Fe_3O_4@SiO_2@mCeO_2) was fabricated as a novel adsorbent to remove phosphate from water. The prepared adsorbent was characterized by X-ray diffractometry(XRD), transmission electron microscopy(TEM), nitrogen adsorption-desorption and vibrating sample magnetometry(VSM), and its phosphate removal performance was investigated through the batch adsorption studies. Characterization results confirmed that mesoporous cerium oxide was successfully assembled on the surface of Fe_3O_4@SiO_2 nanoparticles, and the synthesized adsorbent possessed a typical core-shell structure with a BET surface area of 195 m^2/g, accessible mesopores of 2.6 nm, and the saturation magnetization of 21.11 emu/g. The newly developed adsorbent had an excellent performance in adsorbing phosphate, and its maximum adsorption capacity calculated from the Langmuir model was 64.07 mg/g. The adsorption was fast, and the kinetic data could be best fitted with the pseudo-second-order kinetic model. The phosphate removal decreased with the increase of solution pH(2 to 10), while the higher ionic strength slightly promoted the phosphate adsorption. The presence of Cl~– and SO^(2–)_4 could enhance the adsorption of phosphate whereas HCO~–_ 3 had interfering effect on the phosphate adsorption. The adsorption mechanism was studied by analyzing Zeta potential and FTIR spectroscopy, and the results indicated that the replacement of the surface hydroxyl groups by phosphate ions with the formation of inner-sphere complex played a key role in the phosphate adsorption. The spent adsorbent could be quickly separated from aqueous solution with the assistance of the external magnetic field, and the adsorbed phosphate could be effectively desorbed using a 1 mol/L NaOH solution.