In this paper,the influence of crystal-field on the Luminescence properties of Eu^(2+) in complex oxides are studied theoretically by using purely electrostatic model,the dependence of the 4f^65d levels on Eu-O bond d...In this paper,the influence of crystal-field on the Luminescence properties of Eu^(2+) in complex oxides are studied theoretically by using purely electrostatic model,the dependence of the 4f^65d levels on Eu-O bond distance is given.Quantum chemistry calculation shows that the splitting extent of 4f^65d energy band in cubic or in octahedral fields will be inversely proportional to R^5,where R is the distance of Eu^(2+) to oxygen ligand.The value of R affects slightly the location of the centre of 4f^65d energy band.According to the exper- imental spectrum data,we have discussed the influence of the host chemical composition,the replaced sites of Eu^(2+) and degree of covalency of Eu-O bond on luminescence properties of Eu^(2+).Some regularity of fluorescence spectrum was observed. In alkali-alkaline earth-phosphates,the splitting extent of 4f^65d band (△E) becomes smaller as the Eu-O bond distance (R) increases.In Na_(3-x)(PO_4)_(1-x)(SO_4)_x and Na_(2-x)CaSi_(1-x)P_xO_4 hosts,d-d emission peak of Eu^(2+) will shift to shorter wavelength with the increase of x's value. The crystal structure data show that Eu^(2+) in K_2Mg_2(SO_4)_3 is affected more strongly by crystal-field and covalancy than in KMgF_3,so K_2Mg_2(SO_4)_3:Eu^(2+) emits blue light (E_(em)~m=400nm) and KMgF_3:Eu^(2+) produces ultraviolet fluorescence.展开更多
A novel inductively coupled plasma mass spectrometry method for direct determination of trace rare earth impurities in high purity europium oxide (Eu_2O_3) was developed. The spectral interference,matrix effect,instru...A novel inductively coupled plasma mass spectrometry method for direct determination of trace rare earth impurities in high purity europium oxide (Eu_2O_3) was developed. The spectral interference,matrix effect,instrument parameters fluctuation were investigated and the optimized experimental conditions were established. Under the selected conditions,the detection limits of the method are 3~7 ng·L (-1),the RSD is varied between 2.1%~8.4%,and the percentage recovery is ranged from 90% to 113% for the analytes. The solid detection limit for gross amount of 13 rare earth impurities is 0.19 μg·g (-1) when the matrix (Eu) concentration of 0.1 mg·ml (-1) was chosen. Compared with the reported methods in the literature,this method has several attractive features: simple,small sample amount required,no internal standard and matrix matching requirements.展开更多
The adsorption characteristics of rare earth ion La(Ⅲ) on Yunnan bowl tea surface from aqueous solution and effects of various surfactants on the adsorption were studied. It was found that Yunnan bowl tea can adsorb ...The adsorption characteristics of rare earth ion La(Ⅲ) on Yunnan bowl tea surface from aqueous solution and effects of various surfactants on the adsorption were studied. It was found that Yunnan bowl tea can adsorb strongly La(Ⅲ) and pH may affect drastically the adsorption amount of La(Ⅲ). The adsorption law of La(Ⅲ) on Yunnan bowl tea surface follows the Langmuir equation. The maximum adsorption amount of La(Ⅲ) can reach 15 mg·g (-1). A comprehensive adsorption model is suggested according to the experimental results.展开更多
By heat treating the alkaline earth fluorosilicate glass, transparent glass ceramics containing alkaline earth fluoride nanocrystallites were prepared. The luminescence spectra and phonon sideband associated with the ...By heat treating the alkaline earth fluorosilicate glass, transparent glass ceramics containing alkaline earth fluoride nanocrystallites were prepared. The luminescence spectra and phonon sideband associated with the Eu^3+:^5D2→^7F0 in glass and glass ceramics were investigated to analyze the local environment around Eu^3+. Judd-Ofelt parameters were also calculated from emission spectra, which indicated that the Eu^3+ ions entered the precipitated CaF2, SrF2, and BaF2 nanocrystallites. Heat treating could not pledge Eu^3+ ions to coordinate with F^- in the precipitated MgF2 nanocrystallites, owing to the smaller radius of Mg^2+ than that of Eu^3+.展开更多
The research on electroluminescence based on europium(III) complexes has come to an important phase. This article reviewed the progresses in photoluminescence and electrohiminescence of Eu(III) complexes in recent...The research on electroluminescence based on europium(III) complexes has come to an important phase. This article reviewed the progresses in photoluminescence and electrohiminescence of Eu(III) complexes in recent years from the views of the design of Eu(III) complexes and optimization of device structures, and discussed some important factors influencing electroluminescence performance. The problems existing in the practical application such as the volatility and thermal stability of Eu(III) complexes in this area were discussed, and the possible corresponding solutions were briefly prospected.展开更多
A novel binuclear Eu(Ⅲ) complex [Eu2(dpa dioxide)2(NO3)4(bpdioxide)-(EtOH)] (dpa dioxide = di-2-pyridylamine N,N'-dioxide, bpdioxide = 2,2'-bipyridine N,N'-dioxide) has been synthesized and it exhibits...A novel binuclear Eu(Ⅲ) complex [Eu2(dpa dioxide)2(NO3)4(bpdioxide)-(EtOH)] (dpa dioxide = di-2-pyridylamine N,N'-dioxide, bpdioxide = 2,2'-bipyridine N,N'-dioxide) has been synthesized and it exhibits strong and sharp fluorescent emission at 614 nm under UV radiation of 245 nm at room temperature. X-ray structural determination indicates two independent Eu(Ⅲ) ions in the structure with different EuO8N and EuOgN environments. The compound crystallizes in the triclinic system, space group P1, with a = 10.8089(7), b = 11.4670(8), c = 17.1440(12) A, α = 92.834(2), β = 93.854(3), γ = 95.433(2)°, Z = 2, Dc = 1.876 g/cm3, V= 2107.3(2) A3, F(000) = 1168.0, the final R = 0.032 and wR = 0.086 for 6331 observed reflections with I 〉 2σ(I).展开更多
Complex of europium (Ⅲ) with maleic acid, and binuclear complexes of europium(Ⅲ)with maleic acid doped with non-fluorescent ions gadolinium, lanthanum and yttrium, were synthesized. The compositions and structur...Complex of europium (Ⅲ) with maleic acid, and binuclear complexes of europium(Ⅲ)with maleic acid doped with non-fluorescent ions gadolinium, lanthanum and yttrium, were synthesized. The compositions and structures of complexes were characterized with elemental analysis, single crystal X-ray diffraction, IR and DSC-TG. Fluorescent properties were studied with fluorescence spectrum. The results indicated that the strongest fluorescent complexes were obtained when the ratio of europium and non-fluorescent ion was 8:2. The order of Eu^3+ fluorescence strengthened by three doped rare earths was Gd^3+ 〉La^3+ 〉Y^3+展开更多
Eu(Ⅲ) complexes with chosen Keggin polyoxomatalates, POM, containing organic counter cations (tetrabutylarnmonium, tetrabutylphosphonium, triphenylethylphosphonium), were synthesized, and their photophysical prop...Eu(Ⅲ) complexes with chosen Keggin polyoxomatalates, POM, containing organic counter cations (tetrabutylarnmonium, tetrabutylphosphonium, triphenylethylphosphonium), were synthesized, and their photophysical properties were studied. The synthesized complexes had the general formula of XnH5-n[EuSiW11O39], formulated based on the results of elemental and thermogravimetric analysis and FTIR spectroscopy. The photophysical properties of the obtained compounds were investigated using photoluminescence and electrochemiluminescence, ECL, methods in solutions and solids. The most intense luminescence of Eu(Ⅲ) was observed for the complexes with tetrabutylarnmonium cations. After the addition of phenanthroline to the XnH5-n[EuSiW11O39] solutions, a large increase in the Eu(Ⅲ) luminescence intensity and a lengthening of its luminescence lifetime were observed as a result of the formation of ternary complexes. Attempts to apply ECL as a method of light emission by generating species capable of forming excited states in Ln/POMs, i.e., Tb(Ⅲ) and Eu(Ⅲ) in the Na9EuW10O36 and Na9TbW10O36 complexes, were made. The influence of the POM complexes on the ECL was also tested using the Tb/EDDHA (EDDA=ethylenediamine di(o-hydroxyphenylacetic acid)) complex, which is effective in generating ECL.展开更多
Novel soluble rare earth aromatic carboxylates were prepared. The triplet energy level of organic ligand was measured. The photoluminescence properties of the Tb 3+ and Eu 3+ aromatic carboxylates and lifetimes ...Novel soluble rare earth aromatic carboxylates were prepared. The triplet energy level of organic ligand was measured. The photoluminescence properties of the Tb 3+ and Eu 3+ aromatic carboxylates and lifetimes were investigated, which indicated that these rare earth complexes have high quantum efficiency. Because of their excellent solubility, polymer-doping rare earth carboxylates were fabricated as thin films by spin-coating method and their luminescence properties were studied. Some rare earth organic light-emitting diodes were successfully fabricated which performed high pure color. The maximum luminance of the device of ITO/PVK/PVK∶Tb(AS) 3Phen∶PBD/PBD/Al is 32 cd·m -2 at 28 V.展开更多
The design and synthesis of a novel multi-benzoic acid ligand and the luminescence properties of the rare earth complex with the ligand and Eu3 +were focused on. The composition and structure of ligand and complex wer...The design and synthesis of a novel multi-benzoic acid ligand and the luminescence properties of the rare earth complex with the ligand and Eu3 +were focused on. The composition and structure of ligand and complex were characterized by Fourier transform infrared( FT-IR) spectroscopy,1H nuclear magnetic resonance(1H NMR) techniques, and element analysis. The luminescent properties,heat resistant performance,morphology and distribution in fibers of the complex were also measured. The fluorescent spectra indicate that as-synthesized complex owns excellent luminescent properties. The maximum relative fluorescence intensity of the complex is more than 7 000. The thermo-gravimetric analysis( TGA) results confirm that the initial degradation temperature of as-synthesized complex is at 413 ℃. Transmission electron microscope( TEM) and field-emission scanning electron microscope( FESEM) photos show that the particle size of assynthesized complex is 50-60 nm,and can be uniformly distributed in fiber. Based on these results, it can be concluded that the synthesized complex has excellent luminescent properties, good thermal stability,and extensively application prospect.展开更多
Composite oxide catalysts Eu/TiO 2, Ce/TiO 2, Y/TiO 2 (RE/TiO 2) were prep ared by impregnation method and characterized by means of UV-Vis spectroscopy, TEM and BET. The results indicate that the size of TiO 2 ...Composite oxide catalysts Eu/TiO 2, Ce/TiO 2, Y/TiO 2 (RE/TiO 2) were prep ared by impregnation method and characterized by means of UV-Vis spectroscopy, TEM and BET. The results indicate that the size of TiO 2 has different effect o n the modification effic iency. The catalytic activity of micron scale TiO 2 increases by 136% and 59% o w ing to the addition of Y and Ce, respectively, while the catalytic activity of n anoscale TiO 2 decreases due to the doping of Y and Ce.展开更多
Three new 1,10-phenanthroline derivatives, dipyrido (3,2-f: 2,3-h) quinoxaline (DPQN), imidazo (5,6-f)-(1,10)-phenanthroline (IP) and 3-phenyl-imidazo (5,6-f)-(1,10)-phenanthroline (PIP) were designed and synthesized ...Three new 1,10-phenanthroline derivatives, dipyrido (3,2-f: 2,3-h) quinoxaline (DPQN), imidazo (5,6-f)-(1,10)-phenanthroline (IP) and 3-phenyl-imidazo (5,6-f)-(1,10)-phenanthroline (PIP) were designed and synthesized as a secondary ligand to coordinate with europium (Ⅲ) ion while dibenzoylmethane (DBM) was used as the first ligand. The compositions of the ligands and the europium (Ⅲ) ternary complexes were confirmed by elementary analysis, IR and (()~1H-NMR) spectroscopy. The UV-visible absorption spectra, thermal stability, photoluminescence spectra, quantum yield and fluorescence life time of the Eu(Ⅲ) complexes were investigated. The effect of the structure of the secondary ligand on the photoluminescence of the complexes was discussed. The results show that the synthesized Eu(Ⅲ) complexes are good red-emitiing materials for potential application in fabrication of organic electroluminescence devices.展开更多
A new oxadiazole-functionalized ligand, 2-benzamide-5-phenyl-[ 1,3,4 ] oxadiazole (HL1) was synthesized. With it as the first ligand, 2-Phenyl-imidazo[4,5-f] 1, 10-phenanthroline (L2) as the second ligand, a novel...A new oxadiazole-functionalized ligand, 2-benzamide-5-phenyl-[ 1,3,4 ] oxadiazole (HL1) was synthesized. With it as the first ligand, 2-Phenyl-imidazo[4,5-f] 1, 10-phenanthroline (L2) as the second ligand, a novel europium complex [Eu(L1)3L2] was prepared and characterized by X-ray structure analysis and photoluminescent spectrum. The complex crystallizes in triclinic with space group of Pi. The crystal data are as follows: a = 1.4892(3) nm, b = 1.6639 (3) nm, c=1.7258(4) nm, α =9.290(3) nm, β=11.014(3) nm, γ=11.554(3) nm, V=3520.7(12) nm^3, Z= 2, M = 1244, Dc = 1.292 g·cm^-3, μ = 1.381 mm^-1 and F(000) = 1389. The final R and wR values are 0. 0680 and 0. 1557 for 6607 [ I 〉 2σ (I)] unique reflections. In the complex, each Eu( Ⅲ ) ion is eight-coordinated by three carbonyl oxygen atoms and three oxadiazole nitrogen atoms from L1, two nitrogen atoms from the L2, forming a distorted square antiprism coordination geometry. The complex shows intense red emission typical of Eu^3+ ion under UV excitation, both ligands L1 and L2 exhibit strong antenna effects.展开更多
The title complexes (LnL3 (HL) (H2O) ]2· 2EtOH·2H2O (Ln= Nd (1), La (2), HL=adamantanecarboxylic acid) were prepared and determined by single-crystal X-ray diffraction. Both complexes crystallize ...The title complexes (LnL3 (HL) (H2O) ]2· 2EtOH·2H2O (Ln= Nd (1), La (2), HL=adamantanecarboxylic acid) were prepared and determined by single-crystal X-ray diffraction. Both complexes crystallize in triclinic system with space group P 1^-, cell parameters are: complex (1) a = 1.0556(2) nm, b =1.4913(3) nm, c = 1.4920(3) nm, a = 106.26 (3)°, β=93.51(3)°, γ=97.23(3)°, V=2.2253 (5) nm^3, Dcal=1.409 g · cm^-3, Z = I , F ( 000 ) = 990, μ(Mo Kα) = 1. 225 mm^-1, M, = 1884.50; complex (2) a = 1.0453(2) nm, b = 1.4971(3)nm, c = 1.5052(3) nm, α = 106.07(3)°, β =93.58 (3)°, γ=97.56(3)°, V=2.2391(5)nm^3, Dcal= 1.397 g·cm^-3, Z = 1, F(000) =984, μ(Mo Kα) = 1.015 mm^-1, Mr= 1877.88. The final R and wR are 0. 0396 and 0. 1062 for 8589 (1 ≥ 2σ (I)) observed reflections for complex (1), 0.0505 and 0. 1344 for 8417 ( 1 ≥ 2σ (1) ) observed reflections for complex (2), respectively. The crystals are consisted of a binuelear molecule. The coordination geometry of the Ln( Ⅲ ) ion can be described as trieapped trigonal prism.展开更多
The present paper proposes a new method of spectrophotometry based on linear combination of multiwavelength data by means of selecting a set of properly weighted coefficients and combination methods. It is clear that ...The present paper proposes a new method of spectrophotometry based on linear combination of multiwavelength data by means of selecting a set of properly weighted coefficients and combination methods. It is clear that the weighted combination absorbance attained is only in direct proportion to the concentration of the analysed component and independent of coexisting interferents.The accuracy of the analytical results is improved greatly for the analysis of light rare earths with the coexistence of heavy rare earths.The analyti- cal error from the reagent blank and co-coloration of light and heavy rare earths have also been overcome. The greatly improved linearity and additivity of absorbance are obtained.展开更多
Soil secondary minerals are important scavengers of rare earth elements(REEs) in soils and thus affect geochemical behavior and occurrence of REEs. The fractionation of REEs is a common geochemical phenomenon in soils...Soil secondary minerals are important scavengers of rare earth elements(REEs) in soils and thus affect geochemical behavior and occurrence of REEs. The fractionation of REEs is a common geochemical phenomenon in soils but has received little attention, especially fractionation induced by secondary minerals. In this study, REEs(La to Lu and Y) associated with soil-abundant secondary minerals Fe-, Al-, and Mn-oxides in 196 soil samples were investigated to explore the fractionation and anomalies of REEs related to the minerals. The results show right-inclined chondrite-normalized REE patterns for La–Lu in soils subjected to total soil digestion and partial soil extraction. Light REEs(LREEs) enrichment features were negatively correlated with a Eu anomaly and positively correlated with a Ce anomaly. The fractionation between LREEs and heavy REEs(HREEs) was attributed to the high adsorption affinity of LREEs to secondary minerals and the preferred activation/leaching of HREEs.The substantial fractions of REEs in soils extracted byoxalate and Dithionite-Citrate-Bicarbonate buffer solutions were labile(10 %–30 %), which were similar to the mass fraction of Fe(10 %–20 %). Furthermore, Eu was found to be more mobile than the other REEs in the soils, whereas Ce was less mobile. These results add to our understanding of the distribution and geochemical behavior of REEs in soils, and also help to deduce the conditions of soil formation from REE fractionation.展开更多
文摘In this paper,the influence of crystal-field on the Luminescence properties of Eu^(2+) in complex oxides are studied theoretically by using purely electrostatic model,the dependence of the 4f^65d levels on Eu-O bond distance is given.Quantum chemistry calculation shows that the splitting extent of 4f^65d energy band in cubic or in octahedral fields will be inversely proportional to R^5,where R is the distance of Eu^(2+) to oxygen ligand.The value of R affects slightly the location of the centre of 4f^65d energy band.According to the exper- imental spectrum data,we have discussed the influence of the host chemical composition,the replaced sites of Eu^(2+) and degree of covalency of Eu-O bond on luminescence properties of Eu^(2+).Some regularity of fluorescence spectrum was observed. In alkali-alkaline earth-phosphates,the splitting extent of 4f^65d band (△E) becomes smaller as the Eu-O bond distance (R) increases.In Na_(3-x)(PO_4)_(1-x)(SO_4)_x and Na_(2-x)CaSi_(1-x)P_xO_4 hosts,d-d emission peak of Eu^(2+) will shift to shorter wavelength with the increase of x's value. The crystal structure data show that Eu^(2+) in K_2Mg_2(SO_4)_3 is affected more strongly by crystal-field and covalancy than in KMgF_3,so K_2Mg_2(SO_4)_3:Eu^(2+) emits blue light (E_(em)~m=400nm) and KMgF_3:Eu^(2+) produces ultraviolet fluorescence.
文摘A novel inductively coupled plasma mass spectrometry method for direct determination of trace rare earth impurities in high purity europium oxide (Eu_2O_3) was developed. The spectral interference,matrix effect,instrument parameters fluctuation were investigated and the optimized experimental conditions were established. Under the selected conditions,the detection limits of the method are 3~7 ng·L (-1),the RSD is varied between 2.1%~8.4%,and the percentage recovery is ranged from 90% to 113% for the analytes. The solid detection limit for gross amount of 13 rare earth impurities is 0.19 μg·g (-1) when the matrix (Eu) concentration of 0.1 mg·ml (-1) was chosen. Compared with the reported methods in the literature,this method has several attractive features: simple,small sample amount required,no internal standard and matrix matching requirements.
文摘The adsorption characteristics of rare earth ion La(Ⅲ) on Yunnan bowl tea surface from aqueous solution and effects of various surfactants on the adsorption were studied. It was found that Yunnan bowl tea can adsorb strongly La(Ⅲ) and pH may affect drastically the adsorption amount of La(Ⅲ). The adsorption law of La(Ⅲ) on Yunnan bowl tea surface follows the Langmuir equation. The maximum adsorption amount of La(Ⅲ) can reach 15 mg·g (-1). A comprehensive adsorption model is suggested according to the experimental results.
基金supported by the Science and Technology Department of Zhejiang Province (2006C14010)the Chinese-French Cooperation Programs (MX 07-01)
文摘By heat treating the alkaline earth fluorosilicate glass, transparent glass ceramics containing alkaline earth fluoride nanocrystallites were prepared. The luminescence spectra and phonon sideband associated with the Eu^3+:^5D2→^7F0 in glass and glass ceramics were investigated to analyze the local environment around Eu^3+. Judd-Ofelt parameters were also calculated from emission spectra, which indicated that the Eu^3+ ions entered the precipitated CaF2, SrF2, and BaF2 nanocrystallites. Heat treating could not pledge Eu^3+ ions to coordinate with F^- in the precipitated MgF2 nanocrystallites, owing to the smaller radius of Mg^2+ than that of Eu^3+.
基金supported by the National Basic Research Program (2006CB601103)the National Natural Science Foundation of China (20221101, 20423005, 20471004, 90401028, 50372002, 20671006)
文摘The research on electroluminescence based on europium(III) complexes has come to an important phase. This article reviewed the progresses in photoluminescence and electrohiminescence of Eu(III) complexes in recent years from the views of the design of Eu(III) complexes and optimization of device structures, and discussed some important factors influencing electroluminescence performance. The problems existing in the practical application such as the volatility and thermal stability of Eu(III) complexes in this area were discussed, and the possible corresponding solutions were briefly prospected.
基金supported by the Natural Science Foundation of Jiangxi Province (No.0320026 and 0520036)the Natural Science Foundation of Jinggangshan University (No.JZ0815)
文摘A novel binuclear Eu(Ⅲ) complex [Eu2(dpa dioxide)2(NO3)4(bpdioxide)-(EtOH)] (dpa dioxide = di-2-pyridylamine N,N'-dioxide, bpdioxide = 2,2'-bipyridine N,N'-dioxide) has been synthesized and it exhibits strong and sharp fluorescent emission at 614 nm under UV radiation of 245 nm at room temperature. X-ray structural determination indicates two independent Eu(Ⅲ) ions in the structure with different EuO8N and EuOgN environments. The compound crystallizes in the triclinic system, space group P1, with a = 10.8089(7), b = 11.4670(8), c = 17.1440(12) A, α = 92.834(2), β = 93.854(3), γ = 95.433(2)°, Z = 2, Dc = 1.876 g/cm3, V= 2107.3(2) A3, F(000) = 1168.0, the final R = 0.032 and wR = 0.086 for 6331 observed reflections with I 〉 2σ(I).
基金Project supported by the Natural Science Foundation of Jiangsu Province (BK2004121)
文摘Complex of europium (Ⅲ) with maleic acid, and binuclear complexes of europium(Ⅲ)with maleic acid doped with non-fluorescent ions gadolinium, lanthanum and yttrium, were synthesized. The compositions and structures of complexes were characterized with elemental analysis, single crystal X-ray diffraction, IR and DSC-TG. Fluorescent properties were studied with fluorescence spectrum. The results indicated that the strongest fluorescent complexes were obtained when the ratio of europium and non-fluorescent ion was 8:2. The order of Eu^3+ fluorescence strengthened by three doped rare earths was Gd^3+ 〉La^3+ 〉Y^3+
文摘Eu(Ⅲ) complexes with chosen Keggin polyoxomatalates, POM, containing organic counter cations (tetrabutylarnmonium, tetrabutylphosphonium, triphenylethylphosphonium), were synthesized, and their photophysical properties were studied. The synthesized complexes had the general formula of XnH5-n[EuSiW11O39], formulated based on the results of elemental and thermogravimetric analysis and FTIR spectroscopy. The photophysical properties of the obtained compounds were investigated using photoluminescence and electrochemiluminescence, ECL, methods in solutions and solids. The most intense luminescence of Eu(Ⅲ) was observed for the complexes with tetrabutylarnmonium cations. After the addition of phenanthroline to the XnH5-n[EuSiW11O39] solutions, a large increase in the Eu(Ⅲ) luminescence intensity and a lengthening of its luminescence lifetime were observed as a result of the formation of ternary complexes. Attempts to apply ECL as a method of light emission by generating species capable of forming excited states in Ln/POMs, i.e., Tb(Ⅲ) and Eu(Ⅲ) in the Na9EuW10O36 and Na9TbW10O36 complexes, were made. The influence of the POM complexes on the ECL was also tested using the Tb/EDDHA (EDDA=ethylenediamine di(o-hydroxyphenylacetic acid)) complex, which is effective in generating ECL.
文摘Novel soluble rare earth aromatic carboxylates were prepared. The triplet energy level of organic ligand was measured. The photoluminescence properties of the Tb 3+ and Eu 3+ aromatic carboxylates and lifetimes were investigated, which indicated that these rare earth complexes have high quantum efficiency. Because of their excellent solubility, polymer-doping rare earth carboxylates were fabricated as thin films by spin-coating method and their luminescence properties were studied. Some rare earth organic light-emitting diodes were successfully fabricated which performed high pure color. The maximum luminance of the device of ITO/PVK/PVK∶Tb(AS) 3Phen∶PBD/PBD/Al is 32 cd·m -2 at 28 V.
基金National Natural Science Foundations of China(No.51203112,No.51373118)Application Fundamental and Advanced Technology Research Proposal Project of Tianjin,China(No.13JCYBJC17200)Natural Science Foundation of Heilongjiang Province,China(No.E201259)
文摘The design and synthesis of a novel multi-benzoic acid ligand and the luminescence properties of the rare earth complex with the ligand and Eu3 +were focused on. The composition and structure of ligand and complex were characterized by Fourier transform infrared( FT-IR) spectroscopy,1H nuclear magnetic resonance(1H NMR) techniques, and element analysis. The luminescent properties,heat resistant performance,morphology and distribution in fibers of the complex were also measured. The fluorescent spectra indicate that as-synthesized complex owns excellent luminescent properties. The maximum relative fluorescence intensity of the complex is more than 7 000. The thermo-gravimetric analysis( TGA) results confirm that the initial degradation temperature of as-synthesized complex is at 413 ℃. Transmission electron microscope( TEM) and field-emission scanning electron microscope( FESEM) photos show that the particle size of assynthesized complex is 50-60 nm,and can be uniformly distributed in fiber. Based on these results, it can be concluded that the synthesized complex has excellent luminescent properties, good thermal stability,and extensively application prospect.
文摘Composite oxide catalysts Eu/TiO 2, Ce/TiO 2, Y/TiO 2 (RE/TiO 2) were prep ared by impregnation method and characterized by means of UV-Vis spectroscopy, TEM and BET. The results indicate that the size of TiO 2 has different effect o n the modification effic iency. The catalytic activity of micron scale TiO 2 increases by 136% and 59% o w ing to the addition of Y and Ce, respectively, while the catalytic activity of n anoscale TiO 2 decreases due to the doping of Y and Ce.
文摘Three new 1,10-phenanthroline derivatives, dipyrido (3,2-f: 2,3-h) quinoxaline (DPQN), imidazo (5,6-f)-(1,10)-phenanthroline (IP) and 3-phenyl-imidazo (5,6-f)-(1,10)-phenanthroline (PIP) were designed and synthesized as a secondary ligand to coordinate with europium (Ⅲ) ion while dibenzoylmethane (DBM) was used as the first ligand. The compositions of the ligands and the europium (Ⅲ) ternary complexes were confirmed by elementary analysis, IR and (()~1H-NMR) spectroscopy. The UV-visible absorption spectra, thermal stability, photoluminescence spectra, quantum yield and fluorescence life time of the Eu(Ⅲ) complexes were investigated. The effect of the structure of the secondary ligand on the photoluminescence of the complexes was discussed. The results show that the synthesized Eu(Ⅲ) complexes are good red-emitiing materials for potential application in fabrication of organic electroluminescence devices.
文摘A new oxadiazole-functionalized ligand, 2-benzamide-5-phenyl-[ 1,3,4 ] oxadiazole (HL1) was synthesized. With it as the first ligand, 2-Phenyl-imidazo[4,5-f] 1, 10-phenanthroline (L2) as the second ligand, a novel europium complex [Eu(L1)3L2] was prepared and characterized by X-ray structure analysis and photoluminescent spectrum. The complex crystallizes in triclinic with space group of Pi. The crystal data are as follows: a = 1.4892(3) nm, b = 1.6639 (3) nm, c=1.7258(4) nm, α =9.290(3) nm, β=11.014(3) nm, γ=11.554(3) nm, V=3520.7(12) nm^3, Z= 2, M = 1244, Dc = 1.292 g·cm^-3, μ = 1.381 mm^-1 and F(000) = 1389. The final R and wR values are 0. 0680 and 0. 1557 for 6607 [ I 〉 2σ (I)] unique reflections. In the complex, each Eu( Ⅲ ) ion is eight-coordinated by three carbonyl oxygen atoms and three oxadiazole nitrogen atoms from L1, two nitrogen atoms from the L2, forming a distorted square antiprism coordination geometry. The complex shows intense red emission typical of Eu^3+ ion under UV excitation, both ligands L1 and L2 exhibit strong antenna effects.
文摘The title complexes (LnL3 (HL) (H2O) ]2· 2EtOH·2H2O (Ln= Nd (1), La (2), HL=adamantanecarboxylic acid) were prepared and determined by single-crystal X-ray diffraction. Both complexes crystallize in triclinic system with space group P 1^-, cell parameters are: complex (1) a = 1.0556(2) nm, b =1.4913(3) nm, c = 1.4920(3) nm, a = 106.26 (3)°, β=93.51(3)°, γ=97.23(3)°, V=2.2253 (5) nm^3, Dcal=1.409 g · cm^-3, Z = I , F ( 000 ) = 990, μ(Mo Kα) = 1. 225 mm^-1, M, = 1884.50; complex (2) a = 1.0453(2) nm, b = 1.4971(3)nm, c = 1.5052(3) nm, α = 106.07(3)°, β =93.58 (3)°, γ=97.56(3)°, V=2.2391(5)nm^3, Dcal= 1.397 g·cm^-3, Z = 1, F(000) =984, μ(Mo Kα) = 1.015 mm^-1, Mr= 1877.88. The final R and wR are 0. 0396 and 0. 1062 for 8589 (1 ≥ 2σ (I)) observed reflections for complex (1), 0.0505 and 0. 1344 for 8417 ( 1 ≥ 2σ (1) ) observed reflections for complex (2), respectively. The crystals are consisted of a binuelear molecule. The coordination geometry of the Ln( Ⅲ ) ion can be described as trieapped trigonal prism.
文摘The present paper proposes a new method of spectrophotometry based on linear combination of multiwavelength data by means of selecting a set of properly weighted coefficients and combination methods. It is clear that the weighted combination absorbance attained is only in direct proportion to the concentration of the analysed component and independent of coexisting interferents.The accuracy of the analytical results is improved greatly for the analysis of light rare earths with the coexistence of heavy rare earths.The analyti- cal error from the reagent blank and co-coloration of light and heavy rare earths have also been overcome. The greatly improved linearity and additivity of absorbance are obtained.
基金funded by the National Natural Science Foundation of China(41420104007,41330857,and 41673135)the Guangdong Natural Science Foundation of China(S2013050014266)the One Hundred Talents Programme of The Chinese Academy of Sciences
文摘Soil secondary minerals are important scavengers of rare earth elements(REEs) in soils and thus affect geochemical behavior and occurrence of REEs. The fractionation of REEs is a common geochemical phenomenon in soils but has received little attention, especially fractionation induced by secondary minerals. In this study, REEs(La to Lu and Y) associated with soil-abundant secondary minerals Fe-, Al-, and Mn-oxides in 196 soil samples were investigated to explore the fractionation and anomalies of REEs related to the minerals. The results show right-inclined chondrite-normalized REE patterns for La–Lu in soils subjected to total soil digestion and partial soil extraction. Light REEs(LREEs) enrichment features were negatively correlated with a Eu anomaly and positively correlated with a Ce anomaly. The fractionation between LREEs and heavy REEs(HREEs) was attributed to the high adsorption affinity of LREEs to secondary minerals and the preferred activation/leaching of HREEs.The substantial fractions of REEs in soils extracted byoxalate and Dithionite-Citrate-Bicarbonate buffer solutions were labile(10 %–30 %), which were similar to the mass fraction of Fe(10 %–20 %). Furthermore, Eu was found to be more mobile than the other REEs in the soils, whereas Ce was less mobile. These results add to our understanding of the distribution and geochemical behavior of REEs in soils, and also help to deduce the conditions of soil formation from REE fractionation.