Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,wit...Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys.展开更多
To overcome the limitation in formability at room temperature,manufacturers have developed magnesium alloys with remarkable properties by adding rare-earth elements.The rare-earth magnesium alloys behave differently f...To overcome the limitation in formability at room temperature,manufacturers have developed magnesium alloys with remarkable properties by adding rare-earth elements.The rare-earth magnesium alloys behave differently from the conventional alloys,especially with respect to their coupled anisotropic and strain rate sensitive behavior.In the current work,such behavior of the rare-earth Mg alloy ZEK100 sheet at room temperature is investigated with the aid of the elastic viscoplastic self-consistent polycrystal plasticity model.Different strain rate sensitivities(SRSs)for various deformation modes are employed by the model to simulate the strain rate sensitive behaviors under different loading directions and loading rates.Good agreement between the experiments and simulations reveals the importance and necessity of using different SRSs for each deformation mode in hexagonal close-packed metals.Furthermore,the relative activities of each deformation mode and the texture evolution during different loadings are discussed.The anisotropic and strain rate sensitive behavior is ascribed to the various operating deformation modes with different SRSs during loading along different directions.展开更多
Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,ne...Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,net-shaped Mg5RE and Zr-rich phases.According to aging hardening curves and tensile properties variation,the optimized condition of solution treatment at 520℃for 8 h and subsequent aging at 204℃for 12 h was selected.The continuous secondary Mg5RE phase predominantly formed at grain boundaries during solidification transforms to residual discontinuousβ-Mg5RE phase and fine cuboid REH2particles after heat treatment.The annealed alloy exhibits good comprehensive tensile property at 350℃,with ultimate tensile strength of 153 MPa and elongation to fracture of 6.9%.Segregation of RE elements and eventually RE-rich precipitation at grain boundaries are responsible for the high strength at elevated temperature.展开更多
Due to their low symmetry in crystal structure,low elastic modulus(~45 GPa)and low yielding stress,magnesium(Mg)alloys exhibit strong inelastic behaviors during unloading.As more and more Mg alloys are developed,their...Due to their low symmetry in crystal structure,low elastic modulus(~45 GPa)and low yielding stress,magnesium(Mg)alloys exhibit strong inelastic behaviors during unloading.As more and more Mg alloys are developed,their unloading behaviors were less investigated,especially for rare-earth(RE)Mg alloys.In the current work,the unloading behaviors of the RE Mg alloy ZE10 sheet is carefully studied by both mechanical tests and crystal plasticity modeling.In terms of the stress-strain curves,the inelastic strain,the chord modulus,and the active deformation mechanisms,the substantial anisotropy and the loading path dependency of the unloading behaviors of ZE10 sheets are characterized.The inelastic strains are generally larger under compressive Loading-Un Loading(L-UL)than under tensile L-UL,along the transverse direction(TD)than along the rolling direction(RD)under tensile L-UL,and along RD than along TD under compressive L-UL.The basal slip,twinning and de-twinning are found to be responsible for the unloading behaviors of ZE10 sheets.展开更多
Although extensive research has been conducted on the strengthening mechanism of rare-earth magnesium alloys,achieving a balance between strength and toughness has proven challenging.This paper introduces a method for...Although extensive research has been conducted on the strengthening mechanism of rare-earth magnesium alloys,achieving a balance between strength and toughness has proven challenging.This paper introduces a method for regulating the overlapping structure of the lamellar long-period stacking ordered(LPSO)phase andβ′phase to achieve a balance between strength and toughness in the alloy.By focusing on the extruded VW93A alloy cabin component,the study delves into the mechanism of the alloy's strength and toughness through a comparative analysis of the microstructure characteristics and room-temperature mechanical properties of the alloys in various states.Additionally,the molecular dynamics simulation is employed to clarify the mechanism of the alloy's strength and toughness balance induced by the overlapping structure.The findings reveal that when theβ′phase precipitates in the alloy alone,a significant increase in strength is achieved by pinning dislocations,albeit at the expense of reduced plasticity.Conversely,the presence of the lamellar LPSO phase disperses dislocations between the LPSO phase lamellae,thereby enhancing plasticity by avoiding stress concentration resulting from dislocation stacking.When both phases coexist in the alloy and form an overlapping structure,the dispersion of dislocations due to the lamellar LPSO phase weakens the pinning effect of theβ′phase,further reducing dislocation stacking and resulting in a balance of strength and toughness in the alloy.Ultimately,the alloy with the overlapping structure exhibits an ultimate tensile strength and elongation of 421 MPa and 20.1%,respectively.展开更多
In this study,we successfully developed a low RE containing Mg-3Y-2Gd-1Nd-0.5Zr(wt%)alloy with high strength-ductility synergy by combined processes of hot extrusion,hot rolling and ageing.This alloy exhibits an excel...In this study,we successfully developed a low RE containing Mg-3Y-2Gd-1Nd-0.5Zr(wt%)alloy with high strength-ductility synergy by combined processes of hot extrusion,hot rolling and ageing.This alloy exhibits an excellent strength-ductility balance(UTS of 345±2.0 MPa,TYS of 301±5.0 MPa and EL of 9.2±1.9%),which is better than that of many Mg-RE wrought alloys with higher RE concentration and even comparable to that of 6061 Al wrought alloy.A long-range chain-like structure consisting ofβphase,βH phase,βM phase and zig-zag atomic columns is observed for the first time in the studied alloy.The combined process of hot extrusion and hot rolling boosts the formation of deformed grains and low angle grain boundaries,and makes the deformed grains dominate in the alloy strengthening.Under this circumstance,the following ageing generates a novel heterogeneous structure comprising the long-range chain-like structure with broad interparticle spacing and the spacious precipitate-free zones in the deformed grains,which plays a key role in the concurrent strengthening and toughening of the alloy.The present study demonstrates that the deformed grains with long-range chain-like structures and precipitate-free zones is desirable microstructure for the low RE containing Mg alloys to achieve high strength-ductility synergy.展开更多
High-performance cast magnesium rare-earth(Mg-RE) alloys are one of the most important materials among all developed Mg alloy families, and have shown great potential in military and weapons, aerospace and aviation, o...High-performance cast magnesium rare-earth(Mg-RE) alloys are one of the most important materials among all developed Mg alloy families, and have shown great potential in military and weapons, aerospace and aviation, orthopedic implants, etc. Controlling grain size and distribution of it is key to the promising mechanical performance of Mg-RE alloy casting components. During the casting of a real component, nearly every procedure in the fabrication process will influence the grain refinement effect. The procedure may include and may not be limited to the chemical inoculations, possibly applied physical fields, the interfere between grain refiner and purifications, and the casting techniques with different processing parameters. This paper reviews the recent advances and proposed future developments in these categories on grain refinement of cast Mg-RE alloys. The review will provide insights for the future design of grain refinement techniques,the choosing of processing parameters, and coping strategies for the failure of coarsening for cast Mg-RE components with high quality and good performance.展开更多
As yet,Mg alloys acting as the medical implants have drawn extensive attention,due to their spontaneous degrada bility,effective load-transmissibility and the excellent biocompatibility,particularly in bone tissue rec...As yet,Mg alloys acting as the medical implants have drawn extensive attention,due to their spontaneous degrada bility,effective load-transmissibility and the excellent biocompatibility,particularly in bone tissue reconstruction and vascular radial-support.Regrettably,they were inevitably affected by the tension/compression-torsion,dynamic erosion and corrosion fatigue under complex service conditions,which lead to premature failure of implantation-materials.Micro-alloying addition is an effective way to delay the rapid degradation,especially in rare-earth micro-composite addition.It can not only reduce intensities of galvanic-corrosion by refining the grain sizes and adjusting the Volta-potentials distribution of the precipitates,but also modify the compositions and biocompatibility of the degradation products.Moreover,the higher compress tress on the surface can improve the stability and densification of the film layer,which enhanced the corrosion resistance.Thus,the latest research progress about in vivo/vitro degradation behavio rs and bioco mpatibility of rare-earth Mg alloys is reviewed;The internal relationships between rare-earth elements,phase features and degradation behaviors of Mg alloys are summarized.Moreover,the effects of rare-earth addition on the film-characteristics are deeply explained,and the induced mechanisms of rare earth elements on the biocompatibility are revealed.展开更多
Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not...Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.展开更多
The flame propagation processes of MgH_(2)dust clouds with four different particle sizes were recorded by a high-speed camera.The dynamic flame temperature distributions of MgH_(2)dust clouds were reconstructed by the...The flame propagation processes of MgH_(2)dust clouds with four different particle sizes were recorded by a high-speed camera.The dynamic flame temperature distributions of MgH_(2)dust clouds were reconstructed by the two-color pyrometer technique,and the chemical composition of solid combustion residues were analyzed.The experimental results showed that the average flame propagation velocities of 23μm,40μm,60μm and 103μm MgH_(2)dust clouds in the stable propagation stage were 3.7 m/s,2.8 m/s,2.1 m/s and 0.9 m/s,respectively.The dust clouds with smaller particle sizes had faster flame propagation velocity and stronger oscillation intensity,and their flame temperature distributions were more even and the temperature gradients were smaller.The flame structures of MgH_(2)dust clouds were significantly affected by the particle sinking velocity,and the combustion processes were accompanied by micro-explosion of particles.The falling velocities of 23μm and 40μm MgH_(2)particles were 2.24 cm/s and 6.71 cm/s,respectively.While the falling velocities of 60μm and 103μm MgH_(2)particles were as high as 15.07 cm/s and 44.42 cm/s,respectively,leading to a more rapid downward development and irregular shape of the flame.Furthermore,the dehydrogenation reaction had a significant effect on the combustion performance of MgH_(2)dust.The combustion of H_(2)enhanced the ignition and combustion characteristics of MgH_(2)dust,resulting in a much higher explosion power than the pure Mg dust.The micro-structure characteristics and combustion residues composition analysis of MgH_(2)dust indicated that the combustion control mechanism of MgH_(2)dust flame was mainly the heterogeneous reaction,which was affected by the dehydrogenation reaction.展开更多
Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen...Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen energy lies in the development of high-performance hydrogen storage materials.Magnesium-based hydrogen storage materials exhibit remarkable advantages,including high hydrogen storage density,cost-effectiveness,and abundant magnesium resources,making them highly promising for the hydrogen energy sector.Nonetheless,practical applications of magnesium hydride for hydrogen storage face significant challenges,primarily due to their slow kinetics and stable thermodynamic properties.Herein,we briefly summarize the thermodynamic and kinetic properties of MgH2,encompassing strategies such as alloying,nanoscaling,catalyst doping,and composite system construction to enhance its hydrogen storage performance.Notably,nanoscaling and catalyst doping have emerged as more effective modification strategies.The discussion focuses on the thermodynamic changes induced by nanoscaling and the kinetic enhancements resulting from catalyst doping.Particular emphasis lies in the synergistic improvement strategy of incorporating nanocatalysts with confinement materials,and we revisit typical works on the multi-strategy optimization of MgH2.In conclusion,we conduct an analysis of outstanding challenges and issues,followed by presenting future research and development prospects for MgH2 as hydrogen storage materials.展开更多
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis...This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.展开更多
Realising the potential of Magnesium(Mg),several globally leading ventures have invested in the Mg industry,but their relatively poor corrosion resistance is a never ending saga till date.The corrosion and bio-corrosi...Realising the potential of Magnesium(Mg),several globally leading ventures have invested in the Mg industry,but their relatively poor corrosion resistance is a never ending saga till date.The corrosion and bio-corrosion behaviour of Mg has gained research attention and still remains a hot topic in the application of automobile,aerospace and biomedical industries.The intrinsic high electrochemical nature of Mg limits their utilization in diverse application.This scenario has prompted the development of Mg composites with an aim to achieve superior corrosion and bio-corrosion resistance.The present review enlightens the influence of grain size(GS),secondary phase,texture,type of matrix and reinforcement on the corrosion and bio-corrosion behaviour of Mg composites.Firstly,the corrosion and bio-corrosion behaviour of Mg composites manufactured by primary and secondary processing routes are elucidated.Secondly,the comprehensive corrosion and bio-corrosion mechanisms of these Mg composites are proposed.Thirdly,the individual role of GS,texture and corrosive medium on corrosion and bio-corrosion behaviour of Mg composites are clarified and revealed.The challenges encountered,unanswered issues in this field are explained in detail and accordingly the scope for future research is framed.The review is presented from basic concrete background to advanced corrosion mechanisms with an aim of creating interest among the readers like students,researchers and industry experts from various research backgrounds.Indeed,the corrosion and bio-corrosion behaviour of Mg composites are critically reviewed for the first time to:(i)contribute to the body of knowledge,(ii)foster research and development,(iii)make breakthrough,and(iv)create life changing innovations in the field of Mg composite corrosion.展开更多
Background: Magnesium, an essential mineral crucial for various bodily functions, has been shown to positively influence sleep patterns. This study aimed to evaluate the efficacy of Food-Grown® magnesium in enhan...Background: Magnesium, an essential mineral crucial for various bodily functions, has been shown to positively influence sleep patterns. This study aimed to evaluate the efficacy of Food-Grown® magnesium in enhancing sleep quality and duration, as well as overall well-being. Methods: Eighty participants were randomly assigned to receive either 80 mg of Food-Grown® magnesium or a placebo (microcrystalline cellulose) daily for 8 weeks. Participants completed questionnaires assessing sleep quality, daytime drowsiness, quality of life, anxiety, and stress levels. Additionally, participants maintained daily sleep diaries and wore wrist-worn actigraphy devices. The primary outcome measured was the change in sleep quality and duration. Results: Seventy-one participants fulfilled all study requirements (35 in the active group and 36 in the placebo group). Magnesium supplementation significantly improved reported sleep quality, with the active group showing a 32% increase compared to 16% in the placebo group (p = 0.034). Moreover, magnesium supplementation led to a decrease in reported stress scores at week 8 compared to the placebo group (3.7 ± 2.6 vs. 5.5 ± 3.1, respectively). Both the magnesium and placebo groups exhibited significant increases in reported sleep duration and reductions in time to fall asleep, sleep disturbance, sleep latency, sleep medication usage, and total Pittsburgh Sleep Quality Index score at week 8 compared to baseline. Conclusion: Magnesium supplementation notably enhanced sleep quality and reduced stress levels compared to the placebo group. These findings highlight the potential of magnesium as a beneficial supplement for improving sleep quality and overall well-being.展开更多
The Journal of Magnesium and Alloys(JMA)is actively dedicated to addressing crucial issues related to energy con-servation,emission reduction,energy crises,and sustainable development[1].Magnesium,recognized as the li...The Journal of Magnesium and Alloys(JMA)is actively dedicated to addressing crucial issues related to energy con-servation,emission reduction,energy crises,and sustainable development[1].Magnesium,recognized as the lightest com-mercial structural metal and a promising energy storage ma-terial,holds immense potential in contributing to strategic objectives such as achieving“carbon neutrality”and the“emission peak”,thus mitigating the ongoing energy cri-sis[2].JMA diligently reports on various research fronts,including magnesium-based structural materials,magnesium batteries,magnesium-based hydrogen storage materials,and magnesium-based superconducting super magnets[3].展开更多
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t...This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.展开更多
Magnesium and magnesium alloy foils have great potential for application in battery anodes,electromagnetic shielding,optics and acoustics,and biology because of their excellent specific damping,internal dissipation co...Magnesium and magnesium alloy foils have great potential for application in battery anodes,electromagnetic shielding,optics and acoustics,and biology because of their excellent specific damping,internal dissipation coefficients,magnetic and electrical conductivities,as well as high theoretical specific capacity.However,magnesium alloys exhibit poor deformation ability due to their hexagonal close-packed crystal structure.Preparing magnesium and magnesium alloy foils with thicknesses of less than 0.1 mm is difficult because of surface oxidation and grain growth at high temperatures or severe anisotropy after cold rolling that leads to cracks.Numerous methods have been applied to prepare magnesium alloy foils.They include warm rolling,cold rolling,accumulative roll bonding,electric plastic rolling,and on-line heating rolling.Defects of magnesium and magnesium alloy foils during preparation,such as edge cracks and breakage,are important factors for consideration.Herein,the current status of the research on magnesium and magnesium alloy foils is summarized from the aspects of foil preparation,defect control,performance characterization,and application prospects.The advantages and disadvantages of different preparation methods and defect(edge cracks and breakage)mechanisms in the preparation of foils are identified.展开更多
Nonunion represents a crucial challenge in orthopedic medicine,demanding innovative solutions beyond the scope of traditional bone grafting methods.Among the various strategies available,magnesium(Mg)implants have bee...Nonunion represents a crucial challenge in orthopedic medicine,demanding innovative solutions beyond the scope of traditional bone grafting methods.Among the various strategies available,magnesium(Mg)implants have been recognized for their biocompatibility and biodegradability.However,their susceptibility to rapid corrosion and degradation has garnered notable research interest in bone tissue engineering(BTE),particularly in the development of Mg-incorporated biocomposite scaffolds.These scaffolds gradually release Mg2+,which enhances immunomodulation,osteogenesis,and angiogenesis,thus facilitating effective bone regeneration.This review presents myriad fabrication techniques used to create Mg-incorporated biocomposite scaffolds,including electrospinning,three-dimensional printing,and sol-gel synthesis.Despite these advancements,the application of Mg-incorporated biocomposite scaffolds faces challenges such as controlling the degradation rate of Mg and ensuring mechanical stability.These limitations highlight the necessity for ongoing research aimed at refining fabrication techniques to better regulate the physicochemical and osteogenic properties of scaffolds.This review provides insights into the potential of Mg-incorporated biocomposite scaffolds for BTE and the challenges that need to be addressed for their successful translation into clinical applications.展开更多
Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy de...Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy density,low cost,and recyclability.However,the study on Mg-air battery(MAB)is still at the laboratory level currently,mainly owing to the low anodic efficiency caused by the poor corrosion resistance.In order to reduce corrosion losses and achieve optimal utilization efficiency of Mg anode,the design strategies are reviewed from microstructure perspectives.Firstly,the corrosion behaviors have been discussed,especially the negative difference effect derived by hydrogen evolution.Special attention is given to the effect of anode micro-structures on the MAB,which includes grain size,grain orientation,second phases,crystal structure,twins,and dislocations.For further improvement,the discharge performance,long period stacking ordered phase and its enhancing effect are considered.Meanwhile,given the current debates over Mg dendrites,the potential risk,the impact on discharge,and the elimination strategies are discussed.Microstructure control and single crystal would be promising ways for MAB anode.展开更多
Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tes...Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tests and(corrosion)fatigue crack growth tests were conducted.The rolled and transverse surfaces of the materials show distinct corrosion rate differences in the stable corrosion stage,but the truth is the opposite for the initial stage of corrosion.In air,specimen orientations have a significant influence on the plastic deformation mechanisms near the crack tip,which results in different fatigue fracture surfaces and cracking paths.Compared with R-T specimens,N-T specimens show a slower fatigue crack growth(FCG)rate in air,which can be attributed to crack closure effects and deformation twinning near the crack tip.The corrosion environment will not significantly change the main plastic deformation mechanisms for the same type of specimen.However,the FCG rate in phosphate buffer saline(PBS)is one order of magnitude higher than that in air,which is caused by the combined effects of hydrogen-induced cracking and anodic dissolution.Owing to the similar corrosion rates at crack tips,the specimens with different orientations display close FCG rates in PBS.展开更多
基金supported by National Key Research and Development Program of China[2023YFB4605800]National Natural Science Foundation of China[51935014,52165043]+3 种基金JiangXi Provincial Natural Science Foundation of China[20224ACB204013,20224ACB214008]Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects[20225BCJ23008]Anhui Provincial Natural Science Foundation[2308085ME171]The University Synergy Innovation Program of Anhui Province[GXXT-2023-025,GXXT-2023-026].
文摘Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys.
基金supported by the National Natural Science Foundation of China(No.51975365)the Shanghai Pujiang Program(18PJ1405000)+1 种基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)the Province of Ontario
文摘To overcome the limitation in formability at room temperature,manufacturers have developed magnesium alloys with remarkable properties by adding rare-earth elements.The rare-earth magnesium alloys behave differently from the conventional alloys,especially with respect to their coupled anisotropic and strain rate sensitive behavior.In the current work,such behavior of the rare-earth Mg alloy ZEK100 sheet at room temperature is investigated with the aid of the elastic viscoplastic self-consistent polycrystal plasticity model.Different strain rate sensitivities(SRSs)for various deformation modes are employed by the model to simulate the strain rate sensitive behaviors under different loading directions and loading rates.Good agreement between the experiments and simulations reveals the importance and necessity of using different SRSs for each deformation mode in hexagonal close-packed metals.Furthermore,the relative activities of each deformation mode and the texture evolution during different loadings are discussed.The anisotropic and strain rate sensitive behavior is ascribed to the various operating deformation modes with different SRSs during loading along different directions.
基金support of the National Natural Science Foundation of China(Grant number 52071088)。
文摘Microstructure,mechanical properties and phase transformation of a heat-resistant rare-earth(RE)Mg-16.1Gd-3.5Nd-0.38Zn-0.26Zr-0.15Y(wt.%)alloy were investigated.The as-cast alloy is composed of equiaxedα-Mg matrix,net-shaped Mg5RE and Zr-rich phases.According to aging hardening curves and tensile properties variation,the optimized condition of solution treatment at 520℃for 8 h and subsequent aging at 204℃for 12 h was selected.The continuous secondary Mg5RE phase predominantly formed at grain boundaries during solidification transforms to residual discontinuousβ-Mg5RE phase and fine cuboid REH2particles after heat treatment.The annealed alloy exhibits good comprehensive tensile property at 350℃,with ultimate tensile strength of 153 MPa and elongation to fracture of 6.9%.Segregation of RE elements and eventually RE-rich precipitation at grain boundaries are responsible for the high strength at elevated temperature.
基金the support of the National Natural Science Foundation of China(Nos.51775337,51675331,51975365)Major Projects of the Ministry of Education(No.311017)+5 种基金the Program of Introducing Talents of Discipline to Universities(Grant No.B06012)sponsored by the Shanghai Pujiang Program(18PJ1405000)the University of Sydney-Shanghai Jiao Tong University Partnership Collaboration Awardssupported by the Natural Sciences and Engineering Research Council of Canada(Nos.RGPIN-201606464)partly supported by the Materials Genome Initiative Center,Shanghai Jiao Tong UniversityThe University of Michigan and Shanghai Jiao Tong University(UM-SJTU)joint research project(AE604401)。
文摘Due to their low symmetry in crystal structure,low elastic modulus(~45 GPa)and low yielding stress,magnesium(Mg)alloys exhibit strong inelastic behaviors during unloading.As more and more Mg alloys are developed,their unloading behaviors were less investigated,especially for rare-earth(RE)Mg alloys.In the current work,the unloading behaviors of the RE Mg alloy ZE10 sheet is carefully studied by both mechanical tests and crystal plasticity modeling.In terms of the stress-strain curves,the inelastic strain,the chord modulus,and the active deformation mechanisms,the substantial anisotropy and the loading path dependency of the unloading behaviors of ZE10 sheets are characterized.The inelastic strains are generally larger under compressive Loading-Un Loading(L-UL)than under tensile L-UL,along the transverse direction(TD)than along the rolling direction(RD)under tensile L-UL,and along RD than along TD under compressive L-UL.The basal slip,twinning and de-twinning are found to be responsible for the unloading behaviors of ZE10 sheets.
基金financially supported by the Special Project of Science and Technology Cooperation and Exchange of Shanxi Province(No.202104041101033)the special fund for Science and Technology Innovation Teams of Shanxi Province.
文摘Although extensive research has been conducted on the strengthening mechanism of rare-earth magnesium alloys,achieving a balance between strength and toughness has proven challenging.This paper introduces a method for regulating the overlapping structure of the lamellar long-period stacking ordered(LPSO)phase andβ′phase to achieve a balance between strength and toughness in the alloy.By focusing on the extruded VW93A alloy cabin component,the study delves into the mechanism of the alloy's strength and toughness through a comparative analysis of the microstructure characteristics and room-temperature mechanical properties of the alloys in various states.Additionally,the molecular dynamics simulation is employed to clarify the mechanism of the alloy's strength and toughness balance induced by the overlapping structure.The findings reveal that when theβ′phase precipitates in the alloy alone,a significant increase in strength is achieved by pinning dislocations,albeit at the expense of reduced plasticity.Conversely,the presence of the lamellar LPSO phase disperses dislocations between the LPSO phase lamellae,thereby enhancing plasticity by avoiding stress concentration resulting from dislocation stacking.When both phases coexist in the alloy and form an overlapping structure,the dispersion of dislocations due to the lamellar LPSO phase weakens the pinning effect of theβ′phase,further reducing dislocation stacking and resulting in a balance of strength and toughness in the alloy.Ultimately,the alloy with the overlapping structure exhibits an ultimate tensile strength and elongation of 421 MPa and 20.1%,respectively.
基金This work is supported by Beijing Municipal Natural Science Foundation(2202004)National Natural Science Foundation of China(51801048)Basic Research Fund for Newly Enrolled Teachers.
文摘In this study,we successfully developed a low RE containing Mg-3Y-2Gd-1Nd-0.5Zr(wt%)alloy with high strength-ductility synergy by combined processes of hot extrusion,hot rolling and ageing.This alloy exhibits an excellent strength-ductility balance(UTS of 345±2.0 MPa,TYS of 301±5.0 MPa and EL of 9.2±1.9%),which is better than that of many Mg-RE wrought alloys with higher RE concentration and even comparable to that of 6061 Al wrought alloy.A long-range chain-like structure consisting ofβphase,βH phase,βM phase and zig-zag atomic columns is observed for the first time in the studied alloy.The combined process of hot extrusion and hot rolling boosts the formation of deformed grains and low angle grain boundaries,and makes the deformed grains dominate in the alloy strengthening.Under this circumstance,the following ageing generates a novel heterogeneous structure comprising the long-range chain-like structure with broad interparticle spacing and the spacious precipitate-free zones in the deformed grains,which plays a key role in the concurrent strengthening and toughening of the alloy.The present study demonstrates that the deformed grains with long-range chain-like structures and precipitate-free zones is desirable microstructure for the low RE containing Mg alloys to achieve high strength-ductility synergy.
基金supported by the National Natural Science Foundation of China (Grant Nos.U2037601,51821001,and 52105348)the Natural Science Foundation for Young of Jiangsu Province (Grant No.BK20190863)the Research Program of Joint Research Center of Advanced Spaceflight Technologies (No.USCAST2020-31)。
文摘High-performance cast magnesium rare-earth(Mg-RE) alloys are one of the most important materials among all developed Mg alloy families, and have shown great potential in military and weapons, aerospace and aviation, orthopedic implants, etc. Controlling grain size and distribution of it is key to the promising mechanical performance of Mg-RE alloy casting components. During the casting of a real component, nearly every procedure in the fabrication process will influence the grain refinement effect. The procedure may include and may not be limited to the chemical inoculations, possibly applied physical fields, the interfere between grain refiner and purifications, and the casting techniques with different processing parameters. This paper reviews the recent advances and proposed future developments in these categories on grain refinement of cast Mg-RE alloys. The review will provide insights for the future design of grain refinement techniques,the choosing of processing parameters, and coping strategies for the failure of coarsening for cast Mg-RE components with high quality and good performance.
基金Project supported by the Central Government Guided Local Science and Technology Development Funds (226Z1004G)Natural Science Foundation of Hebei Province (E2020209153)State Key Lab of Advanced Metals and Materials (2020-Z12)。
文摘As yet,Mg alloys acting as the medical implants have drawn extensive attention,due to their spontaneous degrada bility,effective load-transmissibility and the excellent biocompatibility,particularly in bone tissue reconstruction and vascular radial-support.Regrettably,they were inevitably affected by the tension/compression-torsion,dynamic erosion and corrosion fatigue under complex service conditions,which lead to premature failure of implantation-materials.Micro-alloying addition is an effective way to delay the rapid degradation,especially in rare-earth micro-composite addition.It can not only reduce intensities of galvanic-corrosion by refining the grain sizes and adjusting the Volta-potentials distribution of the precipitates,but also modify the compositions and biocompatibility of the degradation products.Moreover,the higher compress tress on the surface can improve the stability and densification of the film layer,which enhanced the corrosion resistance.Thus,the latest research progress about in vivo/vitro degradation behavio rs and bioco mpatibility of rare-earth Mg alloys is reviewed;The internal relationships between rare-earth elements,phase features and degradation behaviors of Mg alloys are summarized.Moreover,the effects of rare-earth addition on the film-characteristics are deeply explained,and the induced mechanisms of rare earth elements on the biocompatibility are revealed.
基金funded by the National Key Research and Development Program of China(2018YFE0104200)National Natural Science Foundation of China(51875310,52175274,82172065)Tsinghua Precision Medicine Foundation.
文摘Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272001,11972046)the Outstanding Youth Project of Natural Science Foundation of Anhui Province(Grant No.2108085Y02)the Major Project of Anhui University Natural Science Foundation(Grant No.KJ2020ZD30)。
文摘The flame propagation processes of MgH_(2)dust clouds with four different particle sizes were recorded by a high-speed camera.The dynamic flame temperature distributions of MgH_(2)dust clouds were reconstructed by the two-color pyrometer technique,and the chemical composition of solid combustion residues were analyzed.The experimental results showed that the average flame propagation velocities of 23μm,40μm,60μm and 103μm MgH_(2)dust clouds in the stable propagation stage were 3.7 m/s,2.8 m/s,2.1 m/s and 0.9 m/s,respectively.The dust clouds with smaller particle sizes had faster flame propagation velocity and stronger oscillation intensity,and their flame temperature distributions were more even and the temperature gradients were smaller.The flame structures of MgH_(2)dust clouds were significantly affected by the particle sinking velocity,and the combustion processes were accompanied by micro-explosion of particles.The falling velocities of 23μm and 40μm MgH_(2)particles were 2.24 cm/s and 6.71 cm/s,respectively.While the falling velocities of 60μm and 103μm MgH_(2)particles were as high as 15.07 cm/s and 44.42 cm/s,respectively,leading to a more rapid downward development and irregular shape of the flame.Furthermore,the dehydrogenation reaction had a significant effect on the combustion performance of MgH_(2)dust.The combustion of H_(2)enhanced the ignition and combustion characteristics of MgH_(2)dust,resulting in a much higher explosion power than the pure Mg dust.The micro-structure characteristics and combustion residues composition analysis of MgH_(2)dust indicated that the combustion control mechanism of MgH_(2)dust flame was mainly the heterogeneous reaction,which was affected by the dehydrogenation reaction.
基金supported by National Key Research and Development Program of China(2021YFB4000604)National Natural Science Foundation of China(52271220)111 Project(B12015)and the Fundamental Research Funds for the Central Universities.
文摘Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen energy lies in the development of high-performance hydrogen storage materials.Magnesium-based hydrogen storage materials exhibit remarkable advantages,including high hydrogen storage density,cost-effectiveness,and abundant magnesium resources,making them highly promising for the hydrogen energy sector.Nonetheless,practical applications of magnesium hydride for hydrogen storage face significant challenges,primarily due to their slow kinetics and stable thermodynamic properties.Herein,we briefly summarize the thermodynamic and kinetic properties of MgH2,encompassing strategies such as alloying,nanoscaling,catalyst doping,and composite system construction to enhance its hydrogen storage performance.Notably,nanoscaling and catalyst doping have emerged as more effective modification strategies.The discussion focuses on the thermodynamic changes induced by nanoscaling and the kinetic enhancements resulting from catalyst doping.Particular emphasis lies in the synergistic improvement strategy of incorporating nanocatalysts with confinement materials,and we revisit typical works on the multi-strategy optimization of MgH2.In conclusion,we conduct an analysis of outstanding challenges and issues,followed by presenting future research and development prospects for MgH2 as hydrogen storage materials.
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region(152131/18E).
文摘This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.
文摘Realising the potential of Magnesium(Mg),several globally leading ventures have invested in the Mg industry,but their relatively poor corrosion resistance is a never ending saga till date.The corrosion and bio-corrosion behaviour of Mg has gained research attention and still remains a hot topic in the application of automobile,aerospace and biomedical industries.The intrinsic high electrochemical nature of Mg limits their utilization in diverse application.This scenario has prompted the development of Mg composites with an aim to achieve superior corrosion and bio-corrosion resistance.The present review enlightens the influence of grain size(GS),secondary phase,texture,type of matrix and reinforcement on the corrosion and bio-corrosion behaviour of Mg composites.Firstly,the corrosion and bio-corrosion behaviour of Mg composites manufactured by primary and secondary processing routes are elucidated.Secondly,the comprehensive corrosion and bio-corrosion mechanisms of these Mg composites are proposed.Thirdly,the individual role of GS,texture and corrosive medium on corrosion and bio-corrosion behaviour of Mg composites are clarified and revealed.The challenges encountered,unanswered issues in this field are explained in detail and accordingly the scope for future research is framed.The review is presented from basic concrete background to advanced corrosion mechanisms with an aim of creating interest among the readers like students,researchers and industry experts from various research backgrounds.Indeed,the corrosion and bio-corrosion behaviour of Mg composites are critically reviewed for the first time to:(i)contribute to the body of knowledge,(ii)foster research and development,(iii)make breakthrough,and(iv)create life changing innovations in the field of Mg composite corrosion.
文摘Background: Magnesium, an essential mineral crucial for various bodily functions, has been shown to positively influence sleep patterns. This study aimed to evaluate the efficacy of Food-Grown® magnesium in enhancing sleep quality and duration, as well as overall well-being. Methods: Eighty participants were randomly assigned to receive either 80 mg of Food-Grown® magnesium or a placebo (microcrystalline cellulose) daily for 8 weeks. Participants completed questionnaires assessing sleep quality, daytime drowsiness, quality of life, anxiety, and stress levels. Additionally, participants maintained daily sleep diaries and wore wrist-worn actigraphy devices. The primary outcome measured was the change in sleep quality and duration. Results: Seventy-one participants fulfilled all study requirements (35 in the active group and 36 in the placebo group). Magnesium supplementation significantly improved reported sleep quality, with the active group showing a 32% increase compared to 16% in the placebo group (p = 0.034). Moreover, magnesium supplementation led to a decrease in reported stress scores at week 8 compared to the placebo group (3.7 ± 2.6 vs. 5.5 ± 3.1, respectively). Both the magnesium and placebo groups exhibited significant increases in reported sleep duration and reductions in time to fall asleep, sleep disturbance, sleep latency, sleep medication usage, and total Pittsburgh Sleep Quality Index score at week 8 compared to baseline. Conclusion: Magnesium supplementation notably enhanced sleep quality and reduced stress levels compared to the placebo group. These findings highlight the potential of magnesium as a beneficial supplement for improving sleep quality and overall well-being.
文摘The Journal of Magnesium and Alloys(JMA)is actively dedicated to addressing crucial issues related to energy con-servation,emission reduction,energy crises,and sustainable development[1].Magnesium,recognized as the lightest com-mercial structural metal and a promising energy storage ma-terial,holds immense potential in contributing to strategic objectives such as achieving“carbon neutrality”and the“emission peak”,thus mitigating the ongoing energy cri-sis[2].JMA diligently reports on various research fronts,including magnesium-based structural materials,magnesium batteries,magnesium-based hydrogen storage materials,and magnesium-based superconducting super magnets[3].
基金financially supported by the National Natural Science Foundation of China(Nos.21171018 and 51271021)the State Key Laboratory for Advanced Metals and Materials。
文摘This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.
基金financially supported by the National Key Research and Development Program of China(Nos.2022 YFB3709300 and 2021YFB3701000)the National Natural Science Foundation of China(Nos.52271090 and 52071036)+1 种基金the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030006)the Independent Research Project of State Key Laboratory of Mechanical Transmissions(Nos.SKLMT-ZZKT-2022Z01 and S KLMT-ZZKT-2022M12)。
文摘Magnesium and magnesium alloy foils have great potential for application in battery anodes,electromagnetic shielding,optics and acoustics,and biology because of their excellent specific damping,internal dissipation coefficients,magnetic and electrical conductivities,as well as high theoretical specific capacity.However,magnesium alloys exhibit poor deformation ability due to their hexagonal close-packed crystal structure.Preparing magnesium and magnesium alloy foils with thicknesses of less than 0.1 mm is difficult because of surface oxidation and grain growth at high temperatures or severe anisotropy after cold rolling that leads to cracks.Numerous methods have been applied to prepare magnesium alloy foils.They include warm rolling,cold rolling,accumulative roll bonding,electric plastic rolling,and on-line heating rolling.Defects of magnesium and magnesium alloy foils during preparation,such as edge cracks and breakage,are important factors for consideration.Herein,the current status of the research on magnesium and magnesium alloy foils is summarized from the aspects of foil preparation,defect control,performance characterization,and application prospects.The advantages and disadvantages of different preparation methods and defect(edge cracks and breakage)mechanisms in the preparation of foils are identified.
文摘Nonunion represents a crucial challenge in orthopedic medicine,demanding innovative solutions beyond the scope of traditional bone grafting methods.Among the various strategies available,magnesium(Mg)implants have been recognized for their biocompatibility and biodegradability.However,their susceptibility to rapid corrosion and degradation has garnered notable research interest in bone tissue engineering(BTE),particularly in the development of Mg-incorporated biocomposite scaffolds.These scaffolds gradually release Mg2+,which enhances immunomodulation,osteogenesis,and angiogenesis,thus facilitating effective bone regeneration.This review presents myriad fabrication techniques used to create Mg-incorporated biocomposite scaffolds,including electrospinning,three-dimensional printing,and sol-gel synthesis.Despite these advancements,the application of Mg-incorporated biocomposite scaffolds faces challenges such as controlling the degradation rate of Mg and ensuring mechanical stability.These limitations highlight the necessity for ongoing research aimed at refining fabrication techniques to better regulate the physicochemical and osteogenic properties of scaffolds.This review provides insights into the potential of Mg-incorporated biocomposite scaffolds for BTE and the challenges that need to be addressed for their successful translation into clinical applications.
基金supported by National Natural Science Foundation of China(52371095)Innovation Research Group of Universities in Chongqing(CXQT21030)+2 种基金Chongqing Talents:Exceptional Young Talents Project(CQYC201905100)Chongqing Youth Expert Studio,Chongqing Overseas Chinese Entrepreneurship and Innovation Support Program(cx2023117)Chongqing Natural Science Foundation Innovation and Development Joint Fund(CSTB 2022NS CQLZX0054)。
文摘Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy density,low cost,and recyclability.However,the study on Mg-air battery(MAB)is still at the laboratory level currently,mainly owing to the low anodic efficiency caused by the poor corrosion resistance.In order to reduce corrosion losses and achieve optimal utilization efficiency of Mg anode,the design strategies are reviewed from microstructure perspectives.Firstly,the corrosion behaviors have been discussed,especially the negative difference effect derived by hydrogen evolution.Special attention is given to the effect of anode micro-structures on the MAB,which includes grain size,grain orientation,second phases,crystal structure,twins,and dislocations.For further improvement,the discharge performance,long period stacking ordered phase and its enhancing effect are considered.Meanwhile,given the current debates over Mg dendrites,the potential risk,the impact on discharge,and the elimination strategies are discussed.Microstructure control and single crystal would be promising ways for MAB anode.
基金the National Natural Science Foundation of China(Nos.52175143 and 51571150)。
文摘Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tests and(corrosion)fatigue crack growth tests were conducted.The rolled and transverse surfaces of the materials show distinct corrosion rate differences in the stable corrosion stage,but the truth is the opposite for the initial stage of corrosion.In air,specimen orientations have a significant influence on the plastic deformation mechanisms near the crack tip,which results in different fatigue fracture surfaces and cracking paths.Compared with R-T specimens,N-T specimens show a slower fatigue crack growth(FCG)rate in air,which can be attributed to crack closure effects and deformation twinning near the crack tip.The corrosion environment will not significantly change the main plastic deformation mechanisms for the same type of specimen.However,the FCG rate in phosphate buffer saline(PBS)is one order of magnitude higher than that in air,which is caused by the combined effects of hydrogen-induced cracking and anodic dissolution.Owing to the similar corrosion rates at crack tips,the specimens with different orientations display close FCG rates in PBS.