Doping of different rare-earth metals (Pr, Nd, Y and La) had an evident influence on the catalytic performance of CuO-CeO2 for the preferential oxidation (PROX) of CO in excess hydrogen. As for Pr, the doping enha...Doping of different rare-earth metals (Pr, Nd, Y and La) had an evident influence on the catalytic performance of CuO-CeO2 for the preferential oxidation (PROX) of CO in excess hydrogen. As for Pr, the doping enhanced the catalytic activity of CuO-CeO2 for PROX. For example, the CO conversion over the above catalyst for PROX was higher than 99% at 120 °C. Especially, the doping of Pr widened the temperature window by 20 °C over CuO-CeO2 with 99% CO conversion. For Nd, Y, and La, the doping depressed the catalytic activity of CuO-CeO2 for PROX. However, the doping of transition metals markedly improved the selectivity of CuO-CeO2 for PROX.展开更多
A transition or rare-earth metal is modeled as the atom immersed in a jellium at intermediate electron gas densities specified by? rs=4.0. The ground states of the spherical jellium atom are constructed based on the H...A transition or rare-earth metal is modeled as the atom immersed in a jellium at intermediate electron gas densities specified by? rs=4.0. The ground states of the spherical jellium atom are constructed based on the Hohenberg-Kohn-Sham density-functional formalism with the inclusion of electron-electron self-interaction corrections of Perdew and Zunger. Static and dynamic polarizabilities of the jellium atom are deduced using time-dependent linear response theory in a local density approximation as formulated by Stott and Zaremba. The calculation is extended to include the intervening elements In, Xe, Cs, and Ba. The calculation demonstrates how the Lindhard dielectric function can be modified to apply to non-simple metals treated in the jellium model.展开更多
The phenomenon of hydrogen thermoemission out of a crystal lattice of powder rare-earth metals trihydrooxides R(OH)3 (R is La, Pr, Nd) was found. The hydrogen thermoemission out of a crystal lattice is partial or full...The phenomenon of hydrogen thermoemission out of a crystal lattice of powder rare-earth metals trihydrooxides R(OH)3 (R is La, Pr, Nd) was found. The hydrogen thermoemission out of a crystal lattice is partial or full removal of hydrogen out of the crystal lattice of powder hydrogen-containing crystal without change of symmetry of such crystal at continuous evacuation of high vacuum at evacuation temperature of Тev. which is lower than recrystallization Тrecrys. or disintegration (Tdisinteg.) temperature of this crystal: Тev. Тrecrys. Tdisineg.. By neutron diffraction it is found that low- temperature (Тevacuation = 400 - 420 K ) removal of hydrogen (by hydrogen thermoemission) out of a crystal lattice of trihydrooxide R(OH)3 under continuous high vacuum evacuating makes possible to obtain metastable “trioxide” R[O]3. Existence of such substance contradicts to the valence law (oxygen is bivalent and Pr is trivalent in hydroxides). Such “trioxide” has a superfluous negative charge: R3+O6-. So they aspire to “capture” three more protons (hydrogen ions) from a water molecules. Obviously, this substance can be stable at low temperatures and in the mediums, which are not containing hydrogen. In the air at room temperature this substance, most likely, interacting with water molecules, gradually again turns into trihydroxide R(OH)3, compensating the superfluous negative charge by three hydrogen atoms. From this it follows that substance R[O3] can simultaneously be an absorber of hydrogen and generator of oxygen at atmospheric conditions and in any mediums which contains water molecules, without any prior processing like heating or high pressure. Thus, the obtained material, without any prior processing like heating or high pressure, can simultaneously be oxygen generator and hydrogen accumulator in any mediums characteristic of R[O3] to transform into stable form R(OH)3 by selective bonding of hydrogen from the hydrogen-containing environment allowing implication of Pr[O3] as the hydrogen selective absorber. Separation (by low-temperature removal) of hydrogen out of R(OH)3 lattice can again lead to restoration of its capabilities to be a simultaneous hydrogen accumulator and oxygen generator in a medium containing water molecules.展开更多
Eight zwitterionic rare earth metal complexes stabilized by amino-bridged tris(phenolato)ligands bearing quaternary ammonium side-arms were synthesized and characterized.These complexes were used as single-component c...Eight zwitterionic rare earth metal complexes stabilized by amino-bridged tris(phenolato)ligands bearing quaternary ammonium side-arms were synthesized and characterized.These complexes were used as single-component catalysts for the cycloaddition of CO_(2)and epoxides,and their catalytic activities are obviously higher than those of their binary analogues.Further studies revealed that the halide anions(Cl^(–),Br^(–),I^(–))and the metal complexes influenced the catalytic activity,and the lanthanum complex bearing iodide anion showed the highest catalytic activity for this addition reaction.A variety of mono-substituted epoxides were converted to cyclic carbonates in good to excellent yields(55%—99%)with high selectivity(>99%)at 30℃and 1 bar CO_(2),whereas internal epoxides required higher both reaction temperatures(60—120℃)and catalyst loading(2 mol%)for high yields.The catalyst was recyclable for four times without noticeable loss of catalytic activity.Based on the results of kinetic studies and in℃situ IR reactions,a plausible reaction mechanism was proposed.展开更多
Coordination polymerization of renewable β-ocimene has been investigated using asymmetric diiminophosphinate lutetium complex1, β-diketiminate yttrium complex 2, bis(phosphino)carbazolide yttrium complex 3, half-san...Coordination polymerization of renewable β-ocimene has been investigated using asymmetric diiminophosphinate lutetium complex1, β-diketiminate yttrium complex 2, bis(phosphino)carbazolide yttrium complex 3, half-sandwich benzyl fluorenyl scandium complex 4 and pyridyl-methylene-fluorenyl rare-metal complexes 5a–5c. Complexes 1, 4 and 5a–5c show trans-1,2-regioselectivities and high activities, of which 5c exhibits excellent isoselectivity(mmmm>99%). Conversely, complexes 2 and 3 promote β-ocimene polymerization to produce isotactic cis-1,4-polyocimenes(cis-1,4>99%, mm>95%). Diblock copolymers cis-1,4-PIP-block-cis-1,4-POc and cis-1,4-PBD-block-cis-1,4-POc are obtained in one-pot reactions of β-ocimene with isoprene and butadiene using complex 3. Epoxidation and hydroxylation of polyocimene afford functionalized polyolefins with enhanced T_(g)(from-20 ℃ to 79 ℃ and 74 ℃) and hydrophilicity.展开更多
The metathesis reaction between pyrrolidinyl-ethylene fluorenyl lithium salts with in situ prepared cationic rare-earth metal dialkyl species[Ln(CH_(2)SiMe_(3))_(2)(THF)_(x)][BPh_(4)]afford efficiently the correspondi...The metathesis reaction between pyrrolidinyl-ethylene fluorenyl lithium salts with in situ prepared cationic rare-earth metal dialkyl species[Ln(CH_(2)SiMe_(3))_(2)(THF)_(x)][BPh_(4)]afford efficiently the corresponding constrained-geometry complexes L^(1)Ln(CH_(2)SiMe_(3))_(2)(L^(1)=FluCH_(2)CH_(2)NC_(4)H_(8),Ln=Y(1a),Lu(1b),Sc(1c))and L^(2)Ln(CH_(2)SiMe_(3))_(2)(L^(2)=(2,7-di-tert-butyl)FluCH_(2)CH_(2)NC_(4)H_(8),Ln=Y(2a),Lu(2b),Sc(2c))in good yields.All these complexes were characterized by NMR spectroscopy,and the solid-state molecular structure of yttrium complex 1a was defined with single-crystal X-ray diffraction analysis.The catalytic performance of these complexes towards 2-vinylpyridine polymerization was investigated,where these complexes alone can efficiently promote the polymerization of 2-vinylpyridine giving isotactic poly(2-vinylpyridine).Upon the activation with[Ph_(3)C][B(C_(6)F_(5))_(4)],the yttrium and lutetium complexes also afford isotactic poly(2-vinylpyridine),while the scandium complexes produce syndiotactic poly(2-vinylpyridine).展开更多
Ligands play a key role in controlling activity of organometallic complexes so that development of new ligands to overcome the challenge is the main topic of modern chemistry.The first example of 1,1-hydride migratory...Ligands play a key role in controlling activity of organometallic complexes so that development of new ligands to overcome the challenge is the main topic of modern chemistry.The first example of 1,1-hydride migratory insertion and intramolecular redox reaction has been realized in this work by applying a new ligand in rare-earth metal chemistry.The novel rare-earth metal complexes L^(Mes)RECH2TMS(THF)(RE=Y(1a),Dy(1b),Er(1c),Yb(1d),L^(Mes)=1-(3-(2,6-iPr_(2)C_(6)H_(3)N=CH)C8H4N)-CH_(2)CH_(2)-3-(2-CH2–4,6-Me_(2)C_(6)H_(2))-(N(CH)_(2)NC),THF=tetrahydrofuran)bearing a ligand with imino,indolyl,NHC(N-heterocyclic carbene)multiple functionalities were synthesized and characterized.Treatment of complexes 1 with silanes(PhSiH3or PhSiH2Me or PhSiD3)selectively produced the unprecedented 1,1-hydride(or deuterated H)migratory insertion of the indolyl moiety of the novel unsymmetrical dinuclear rare-earth metal complexes 2.The complex 2a reacts with Ph_(2)C=O to give the selective C=O double bond insertion to the RE–Co-methylene-Mesbond product 3a which further reacts with another Ph_(2)C=O(or DMAP,4-N,N-dimethylaminopyridine)affording the novelμ-η^(2):η^(3)-dianionic 3-iminoindolyl dinuclear rare-earth metal complex 4a.The latter is formed through an unusual intramolecular redox reaction(through electron migration from the 2-carbanion of the indolyl ring to the imino motif)resulting in the re-aromatization of the indolyl ring.展开更多
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts...Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.展开更多
Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,hi...Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs.展开更多
Entropy production in quasi-isentropic compression (QIC) is critically important for understanding the properties of materials under extremeconditions. However, the origin and accurate quantification of entropy in thi...Entropy production in quasi-isentropic compression (QIC) is critically important for understanding the properties of materials under extremeconditions. However, the origin and accurate quantification of entropy in this situation remain long-standing challenges. In this work, a framework is established for the quantification of entropy production and partition, and their relation to microstructural change in QIC. Cu50Zr50is taken as a model material, and its compression is simulated by molecular dynamics. On the basis of atomistic simulation-informed physicalproperties and free energy, the thermodynamic path is recovered, and the entropy production and its relation to microstructural change aresuccessfully quantified by the proposed framework. Contrary to intuition, entropy production during QIC of metallic glasses is relativelyinsensitive to the strain rate ˙γ when ˙γ ranges from 7.5 × 10^(8) to 2 × 10^(9)/s, which are values reachable in QIC experiments, with a magnitudeof the order of 10^(−2)kB/atom per GPa. However, when ˙γ is extremely high (>2 × 10^(9)/s), a notable increase in entropy production rate with˙γ is observed. The Taylor–Quinney factor is found to vary with strain but not with strain rate in the simulated regime. It is demonstrated thatentropy production is dominated by the configurational part, compared with the vibrational part. In the rate-insensitive regime, the increase inconfigurational entropy exhibits a linear relation to the Shannon-entropic quantification of microstructural change, and a stretched exponential relation to the Taylor–Quinney factor. The quantification of entropy is expected to provide thermodynamic insights into the fundamentalrelation between microstructure evolution and plastic dissipation.展开更多
Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), sc...Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), scanning electron microscopy(SEM), and electron backscatter diffraction(EBSD).The coating bonding strength is assessed by pull-out tests and scribing in accordance with GB/T 9286-1998.The results show that the Cu coating with a thickness of 30 μm deposited on GF/PEEK by magnetron sputtering has lower roughness, finer grain size, higher crystallinity, as well as better macroscopic compressive stress,bonding strength, and electrical conductivity than the Cu coating deposited by electroplating.展开更多
BACKGROUND Endoscopic ultrasound-guided biliary drainage using electrocautery-enhanced(ECE)delivery of lumen-apposing metal stent(LAMS)is gradually being re-cognized as a viable palliative technique for malignant bili...BACKGROUND Endoscopic ultrasound-guided biliary drainage using electrocautery-enhanced(ECE)delivery of lumen-apposing metal stent(LAMS)is gradually being re-cognized as a viable palliative technique for malignant biliary obstruction after endoscopic retrograde cholangiopancreatography(ERCP)failure.However,most of the studies that have assessed its efficacy and safety were small and hetero-geneous.Prior meta-analyses of six or fewer studies that were published 2 years ago were therefore underpowered to yield convincing evidence.AIM To update the efficacy and safety of ECE-LAMS for treatment of biliary ob-struction after ERCP failure.METHODS We searched PubMed,EMBASE,and Scopus databases from the inception of the ECE technique to May 13,2022.Primary outcome measure was pooled technical success rate,and secondary outcomes were pooled rates of clinical success,re-intervention,and adverse events.Meta-analysis was performed using a random-effects model following Freeman-Tukey double-arcsine transformation in R soft-ware(version 4.1.3).RESULTS Fourteen eligible studies involving 620 participants were ultimately included.The pooled rate of technical success was 96.7%,and clinical success was 91.0%.Adverse events were reported in 17.5%of patients.Overall reinter-vention rate was 7.3%.Subgroup analyses showed results were generally consistent.CONCLUSION ECE-LAMS has favorable success with acceptable adverse events in relieving biliary obstruction when ERCP is impossible.The consistency of results across most subgroups suggested that this is a generalizable approach.展开更多
Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing...Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices.展开更多
In the present work,seven Mg-Zn-Ag alloys with the nominal composition of Mg_(96-x)Zn_(x)Ag_(4)(x=17,20,23,26,29,32,35 in at.%)were prepared by induction melting and single-roller melt-spinning.The X-ray diffraction(X...In the present work,seven Mg-Zn-Ag alloys with the nominal composition of Mg_(96-x)Zn_(x)Ag_(4)(x=17,20,23,26,29,32,35 in at.%)were prepared by induction melting and single-roller melt-spinning.The X-ray diffraction(XRD)analyses indicate the metallic glasses with three composition of Mg_(73)Zn_(23)Ag_(4),Mg_(70)Zn_(26)Ag_(4),and Mg_(67)Zn_(29)Ag_(4)were obtained successfully.The differential scanning calorimetry(DSC)measurement was used to obtain the characteristic temperature of Mg-Zn-Ag metallic glasses for the glass-forming ability analysis.The maximum glass transition temperature(Trg)was found to be 0.525 with a composition close to Mg_(67)Zn_(29)Ag_(4),which results in the best glass-forming ability.Moreover,the immersion test in simulated body fluid(SBF)demonstrate the relative homogeneous corrosion behavior of the Mg-Zn-Ag metallic glasses.The corrosion rate of Mg-Zn-Ag metallic glasses in SBF solution decreases with the increase of Zn content.The sample Mg_(67)Zn_(29)Ag_(4)has the lowest corrosion rate of 0.19mm/yr,which could meet the clinical application requirement well.The in vitro cell experiments show that the Madin-Darby canine kidney(MDCK)cells cultured in sample Mg_(67)Zn_(29)Ag_(4)and its extraction medium have higher activity.However,the Mg-Zn-Ag metallic glasses exhibit obvious inhibitory effect on human rhabdomyosarcoma(RD)tumor cells.The present investigations on the glass-forming ability,corrosion behavior,cytocompatibility and tumor inhibition function of the Mg-Zn-Ag based metallic glass could reveal their biomedical application possibility.展开更多
The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag...The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications.展开更多
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements ...Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.展开更多
Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l...Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature.展开更多
The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein...The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.展开更多
Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient elec...Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage.展开更多
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan...Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.展开更多
基金the National Basic Research Program of China (973 program, No. 2004 CB 7195040)
文摘Doping of different rare-earth metals (Pr, Nd, Y and La) had an evident influence on the catalytic performance of CuO-CeO2 for the preferential oxidation (PROX) of CO in excess hydrogen. As for Pr, the doping enhanced the catalytic activity of CuO-CeO2 for PROX. For example, the CO conversion over the above catalyst for PROX was higher than 99% at 120 °C. Especially, the doping of Pr widened the temperature window by 20 °C over CuO-CeO2 with 99% CO conversion. For Nd, Y, and La, the doping depressed the catalytic activity of CuO-CeO2 for PROX. However, the doping of transition metals markedly improved the selectivity of CuO-CeO2 for PROX.
文摘A transition or rare-earth metal is modeled as the atom immersed in a jellium at intermediate electron gas densities specified by? rs=4.0. The ground states of the spherical jellium atom are constructed based on the Hohenberg-Kohn-Sham density-functional formalism with the inclusion of electron-electron self-interaction corrections of Perdew and Zunger. Static and dynamic polarizabilities of the jellium atom are deduced using time-dependent linear response theory in a local density approximation as formulated by Stott and Zaremba. The calculation is extended to include the intervening elements In, Xe, Cs, and Ba. The calculation demonstrates how the Lindhard dielectric function can be modified to apply to non-simple metals treated in the jellium model.
文摘The phenomenon of hydrogen thermoemission out of a crystal lattice of powder rare-earth metals trihydrooxides R(OH)3 (R is La, Pr, Nd) was found. The hydrogen thermoemission out of a crystal lattice is partial or full removal of hydrogen out of the crystal lattice of powder hydrogen-containing crystal without change of symmetry of such crystal at continuous evacuation of high vacuum at evacuation temperature of Тev. which is lower than recrystallization Тrecrys. or disintegration (Tdisinteg.) temperature of this crystal: Тev. Тrecrys. Tdisineg.. By neutron diffraction it is found that low- temperature (Тevacuation = 400 - 420 K ) removal of hydrogen (by hydrogen thermoemission) out of a crystal lattice of trihydrooxide R(OH)3 under continuous high vacuum evacuating makes possible to obtain metastable “trioxide” R[O]3. Existence of such substance contradicts to the valence law (oxygen is bivalent and Pr is trivalent in hydroxides). Such “trioxide” has a superfluous negative charge: R3+O6-. So they aspire to “capture” three more protons (hydrogen ions) from a water molecules. Obviously, this substance can be stable at low temperatures and in the mediums, which are not containing hydrogen. In the air at room temperature this substance, most likely, interacting with water molecules, gradually again turns into trihydroxide R(OH)3, compensating the superfluous negative charge by three hydrogen atoms. From this it follows that substance R[O3] can simultaneously be an absorber of hydrogen and generator of oxygen at atmospheric conditions and in any mediums which contains water molecules, without any prior processing like heating or high pressure. Thus, the obtained material, without any prior processing like heating or high pressure, can simultaneously be oxygen generator and hydrogen accumulator in any mediums characteristic of R[O3] to transform into stable form R(OH)3 by selective bonding of hydrogen from the hydrogen-containing environment allowing implication of Pr[O3] as the hydrogen selective absorber. Separation (by low-temperature removal) of hydrogen out of R(OH)3 lattice can again lead to restoration of its capabilities to be a simultaneous hydrogen accumulator and oxygen generator in a medium containing water molecules.
基金the National Key R&D Program of China(2022YFF0709802)the National Natural Science Foundation of China(22271205)PAPD is gratefully acknowledged.
文摘Eight zwitterionic rare earth metal complexes stabilized by amino-bridged tris(phenolato)ligands bearing quaternary ammonium side-arms were synthesized and characterized.These complexes were used as single-component catalysts for the cycloaddition of CO_(2)and epoxides,and their catalytic activities are obviously higher than those of their binary analogues.Further studies revealed that the halide anions(Cl^(–),Br^(–),I^(–))and the metal complexes influenced the catalytic activity,and the lanthanum complex bearing iodide anion showed the highest catalytic activity for this addition reaction.A variety of mono-substituted epoxides were converted to cyclic carbonates in good to excellent yields(55%—99%)with high selectivity(>99%)at 30℃and 1 bar CO_(2),whereas internal epoxides required higher both reaction temperatures(60—120℃)and catalyst loading(2 mol%)for high yields.The catalyst was recyclable for four times without noticeable loss of catalytic activity.Based on the results of kinetic studies and in℃situ IR reactions,a plausible reaction mechanism was proposed.
基金financially supported by the open research fund program of Science and Technology on Aerospace Chemical Power Laboratory (No. STACPL120221B03)the National Natural Science Foundation of China (Nos. s22175059,52073275 and U21A20279)。
文摘Coordination polymerization of renewable β-ocimene has been investigated using asymmetric diiminophosphinate lutetium complex1, β-diketiminate yttrium complex 2, bis(phosphino)carbazolide yttrium complex 3, half-sandwich benzyl fluorenyl scandium complex 4 and pyridyl-methylene-fluorenyl rare-metal complexes 5a–5c. Complexes 1, 4 and 5a–5c show trans-1,2-regioselectivities and high activities, of which 5c exhibits excellent isoselectivity(mmmm>99%). Conversely, complexes 2 and 3 promote β-ocimene polymerization to produce isotactic cis-1,4-polyocimenes(cis-1,4>99%, mm>95%). Diblock copolymers cis-1,4-PIP-block-cis-1,4-POc and cis-1,4-PBD-block-cis-1,4-POc are obtained in one-pot reactions of β-ocimene with isoprene and butadiene using complex 3. Epoxidation and hydroxylation of polyocimene afford functionalized polyolefins with enhanced T_(g)(from-20 ℃ to 79 ℃ and 74 ℃) and hydrophilicity.
基金Project supported by National Natural Science Foundation of China(21805143)Natural Science Foundation of Zhejiang Province(LY21B040002)+1 种基金Natural Science Foundation of Ningbo(202003N4110)the K.C.Wong Magna Fund from Ningbo University。
文摘The metathesis reaction between pyrrolidinyl-ethylene fluorenyl lithium salts with in situ prepared cationic rare-earth metal dialkyl species[Ln(CH_(2)SiMe_(3))_(2)(THF)_(x)][BPh_(4)]afford efficiently the corresponding constrained-geometry complexes L^(1)Ln(CH_(2)SiMe_(3))_(2)(L^(1)=FluCH_(2)CH_(2)NC_(4)H_(8),Ln=Y(1a),Lu(1b),Sc(1c))and L^(2)Ln(CH_(2)SiMe_(3))_(2)(L^(2)=(2,7-di-tert-butyl)FluCH_(2)CH_(2)NC_(4)H_(8),Ln=Y(2a),Lu(2b),Sc(2c))in good yields.All these complexes were characterized by NMR spectroscopy,and the solid-state molecular structure of yttrium complex 1a was defined with single-crystal X-ray diffraction analysis.The catalytic performance of these complexes towards 2-vinylpyridine polymerization was investigated,where these complexes alone can efficiently promote the polymerization of 2-vinylpyridine giving isotactic poly(2-vinylpyridine).Upon the activation with[Ph_(3)C][B(C_(6)F_(5))_(4)],the yttrium and lutetium complexes also afford isotactic poly(2-vinylpyridine),while the scandium complexes produce syndiotactic poly(2-vinylpyridine).
基金supported by the National Natural Science Foundation of China(22031001,21871004,21861162009,22171004)the grants from the Education Department of Anhui Province(GXXT-2021-052)。
文摘Ligands play a key role in controlling activity of organometallic complexes so that development of new ligands to overcome the challenge is the main topic of modern chemistry.The first example of 1,1-hydride migratory insertion and intramolecular redox reaction has been realized in this work by applying a new ligand in rare-earth metal chemistry.The novel rare-earth metal complexes L^(Mes)RECH2TMS(THF)(RE=Y(1a),Dy(1b),Er(1c),Yb(1d),L^(Mes)=1-(3-(2,6-iPr_(2)C_(6)H_(3)N=CH)C8H4N)-CH_(2)CH_(2)-3-(2-CH2–4,6-Me_(2)C_(6)H_(2))-(N(CH)_(2)NC),THF=tetrahydrofuran)bearing a ligand with imino,indolyl,NHC(N-heterocyclic carbene)multiple functionalities were synthesized and characterized.Treatment of complexes 1 with silanes(PhSiH3or PhSiH2Me or PhSiD3)selectively produced the unprecedented 1,1-hydride(or deuterated H)migratory insertion of the indolyl moiety of the novel unsymmetrical dinuclear rare-earth metal complexes 2.The complex 2a reacts with Ph_(2)C=O to give the selective C=O double bond insertion to the RE–Co-methylene-Mesbond product 3a which further reacts with another Ph_(2)C=O(or DMAP,4-N,N-dimethylaminopyridine)affording the novelμ-η^(2):η^(3)-dianionic 3-iminoindolyl dinuclear rare-earth metal complex 4a.The latter is formed through an unusual intramolecular redox reaction(through electron migration from the 2-carbanion of the indolyl ring to the imino motif)resulting in the re-aromatization of the indolyl ring.
基金the support from the CIPHER Project(IIID 2018-008)funded by the Commission on Higher Education-Philippine California Advanced Research Institutes(CHED-PCARI)。
文摘Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.
基金the financial support from the Australian Research Council,Centre for Materials Science,Queensland University of Technologythe Supported by the Fundamental Research Funds for the Central Universities。
文摘Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs.
基金supported by the NSAF under Grant No.U1830206,the National Key R&D Program of China under Grant No.2017YFA0403200the National Natural Science Foundation of China under Grant Nos.11874424 and 12104507the Science and Technology Innovation Program of Hunan Province under Grant No.2021RC4026.
文摘Entropy production in quasi-isentropic compression (QIC) is critically important for understanding the properties of materials under extremeconditions. However, the origin and accurate quantification of entropy in this situation remain long-standing challenges. In this work, a framework is established for the quantification of entropy production and partition, and their relation to microstructural change in QIC. Cu50Zr50is taken as a model material, and its compression is simulated by molecular dynamics. On the basis of atomistic simulation-informed physicalproperties and free energy, the thermodynamic path is recovered, and the entropy production and its relation to microstructural change aresuccessfully quantified by the proposed framework. Contrary to intuition, entropy production during QIC of metallic glasses is relativelyinsensitive to the strain rate ˙γ when ˙γ ranges from 7.5 × 10^(8) to 2 × 10^(9)/s, which are values reachable in QIC experiments, with a magnitudeof the order of 10^(−2)kB/atom per GPa. However, when ˙γ is extremely high (>2 × 10^(9)/s), a notable increase in entropy production rate with˙γ is observed. The Taylor–Quinney factor is found to vary with strain but not with strain rate in the simulated regime. It is demonstrated thatentropy production is dominated by the configurational part, compared with the vibrational part. In the rate-insensitive regime, the increase inconfigurational entropy exhibits a linear relation to the Shannon-entropic quantification of microstructural change, and a stretched exponential relation to the Taylor–Quinney factor. The quantification of entropy is expected to provide thermodynamic insights into the fundamentalrelation between microstructure evolution and plastic dissipation.
基金Funded by Shenzhen-Hong Kong Innovative Collaborative Research and Development Program (Nos.SGLH20181109 110802117, CityU 9240014)Innovation Project of Southwestern Institute of Physics (Nos.202001XWCXYD002, 202301XWCX003)CNNC Young Talent Program (No.2023JZYF-01)。
文摘Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), scanning electron microscopy(SEM), and electron backscatter diffraction(EBSD).The coating bonding strength is assessed by pull-out tests and scribing in accordance with GB/T 9286-1998.The results show that the Cu coating with a thickness of 30 μm deposited on GF/PEEK by magnetron sputtering has lower roughness, finer grain size, higher crystallinity, as well as better macroscopic compressive stress,bonding strength, and electrical conductivity than the Cu coating deposited by electroplating.
基金The authors have read the PRISMA 2009 Checklist,and the manuscript was prepared and revised according to the PRISMA 2009 Checklist.
文摘BACKGROUND Endoscopic ultrasound-guided biliary drainage using electrocautery-enhanced(ECE)delivery of lumen-apposing metal stent(LAMS)is gradually being re-cognized as a viable palliative technique for malignant biliary obstruction after endoscopic retrograde cholangiopancreatography(ERCP)failure.However,most of the studies that have assessed its efficacy and safety were small and hetero-geneous.Prior meta-analyses of six or fewer studies that were published 2 years ago were therefore underpowered to yield convincing evidence.AIM To update the efficacy and safety of ECE-LAMS for treatment of biliary ob-struction after ERCP failure.METHODS We searched PubMed,EMBASE,and Scopus databases from the inception of the ECE technique to May 13,2022.Primary outcome measure was pooled technical success rate,and secondary outcomes were pooled rates of clinical success,re-intervention,and adverse events.Meta-analysis was performed using a random-effects model following Freeman-Tukey double-arcsine transformation in R soft-ware(version 4.1.3).RESULTS Fourteen eligible studies involving 620 participants were ultimately included.The pooled rate of technical success was 96.7%,and clinical success was 91.0%.Adverse events were reported in 17.5%of patients.Overall reinter-vention rate was 7.3%.Subgroup analyses showed results were generally consistent.CONCLUSION ECE-LAMS has favorable success with acceptable adverse events in relieving biliary obstruction when ERCP is impossible.The consistency of results across most subgroups suggested that this is a generalizable approach.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Ministry of Science and ICT(MSIT)(RS-2023-00251283,and 2022M3D1A2083618)by the Ministry of Education(2020R1A6A1A03040516).
文摘Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices.
基金National Key Research and Development Program of China(2018YFC1106702)Guangdong Basic and Applied Basic Research Foundation(2020A1515011301,2019A1515110067 and 2020A1515110055)+1 种基金Shenzhen Basic Research Project(JCYJ20210324120001003,JCYJ20200109144608205 and JCYJ20200109144604020)IER Foundation(HT-JDCXY-201902 and HT-JD-CXY-201907)for financial support.
文摘In the present work,seven Mg-Zn-Ag alloys with the nominal composition of Mg_(96-x)Zn_(x)Ag_(4)(x=17,20,23,26,29,32,35 in at.%)were prepared by induction melting and single-roller melt-spinning.The X-ray diffraction(XRD)analyses indicate the metallic glasses with three composition of Mg_(73)Zn_(23)Ag_(4),Mg_(70)Zn_(26)Ag_(4),and Mg_(67)Zn_(29)Ag_(4)were obtained successfully.The differential scanning calorimetry(DSC)measurement was used to obtain the characteristic temperature of Mg-Zn-Ag metallic glasses for the glass-forming ability analysis.The maximum glass transition temperature(Trg)was found to be 0.525 with a composition close to Mg_(67)Zn_(29)Ag_(4),which results in the best glass-forming ability.Moreover,the immersion test in simulated body fluid(SBF)demonstrate the relative homogeneous corrosion behavior of the Mg-Zn-Ag metallic glasses.The corrosion rate of Mg-Zn-Ag metallic glasses in SBF solution decreases with the increase of Zn content.The sample Mg_(67)Zn_(29)Ag_(4)has the lowest corrosion rate of 0.19mm/yr,which could meet the clinical application requirement well.The in vitro cell experiments show that the Madin-Darby canine kidney(MDCK)cells cultured in sample Mg_(67)Zn_(29)Ag_(4)and its extraction medium have higher activity.However,the Mg-Zn-Ag metallic glasses exhibit obvious inhibitory effect on human rhabdomyosarcoma(RD)tumor cells.The present investigations on the glass-forming ability,corrosion behavior,cytocompatibility and tumor inhibition function of the Mg-Zn-Ag based metallic glass could reveal their biomedical application possibility.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(2021R1A4A2000934).
文摘The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications.
基金The work described in this paper was fully supported by a Grant from the City University of Hong Kong(Project No.9610641).
文摘Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.
基金This work was financially supported by Stable Support Plan Program for Higher Education Institutions(20220815094504001)Shenzhen Key Laboratory of Advanced Energy Storage(ZDSYS20220401141000001)+1 种基金This work was also financially supported by the Shenzhen Science and Technology Innovation Commission(GJHZ20200731095606021,20200925155544005)the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone(HZQB-KCZYB-2020083)。
文摘Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature.
基金the financial support from the National Natural Science Foundation of China(Nos.22205191 and 52002346)the Science and Technology Innovation Program of Hunan Province(No.2021RC3109)+1 种基金the Natural Science Foundation of Hunan Province,China(No.2022JJ40446)Guangxi Key Laboratory of Low Carbon Energy Material(No.2020GXKLLCEM01)。
文摘The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs.
基金supported by National Undergraduate Training Programs for Innovations[grant number 202210225259]the Outstanding Youth Project of Natural Science Foundation in Heilongjiang Province(YQ2022E040)+3 种基金the Shandong Provincial Natural Science Foundation(ZR2022ME166)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q20023)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020197)the 111 Project(B20088).
文摘Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.523712475,2072415 and 62101352)Shenzhen Science and Technology Program(RCBS20210706092343016).
文摘Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.