期刊文献+
共找到131,461篇文章
< 1 2 250 >
每页显示 20 50 100
Influence of rare-earth metal doping on the catalytic performance of CuO-CeO_2 for the preferential oxidation of CO in excess hydrogen 被引量:1
1
作者 Zhigang Liu Renxian Zhou Xiaoming Zheng 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第3期283-287,共5页
Doping of different rare-earth metals (Pr, Nd, Y and La) had an evident influence on the catalytic performance of CuO-CeO2 for the preferential oxidation (PROX) of CO in excess hydrogen. As for Pr, the doping enha... Doping of different rare-earth metals (Pr, Nd, Y and La) had an evident influence on the catalytic performance of CuO-CeO2 for the preferential oxidation (PROX) of CO in excess hydrogen. As for Pr, the doping enhanced the catalytic activity of CuO-CeO2 for PROX. For example, the CO conversion over the above catalyst for PROX was higher than 99% at 120 °C. Especially, the doping of Pr widened the temperature window by 20 °C over CuO-CeO2 with 99% CO conversion. For Nd, Y, and La, the doping depressed the catalytic activity of CuO-CeO2 for PROX. However, the doping of transition metals markedly improved the selectivity of CuO-CeO2 for PROX. 展开更多
关键词 CuO-CeO2 rare-earth metal DOPING CO
下载PDF
Infrared Polarizabilities of 3d-Transition and Rare-Earth Metals
2
作者 Kofi Nuroh 《Journal of Modern Physics》 2018年第2期287-301,共15页
A transition or rare-earth metal is modeled as the atom immersed in a jellium at intermediate electron gas densities specified by? rs=4.0. The ground states of the spherical jellium atom are constructed based on the H... A transition or rare-earth metal is modeled as the atom immersed in a jellium at intermediate electron gas densities specified by? rs=4.0. The ground states of the spherical jellium atom are constructed based on the Hohenberg-Kohn-Sham density-functional formalism with the inclusion of electron-electron self-interaction corrections of Perdew and Zunger. Static and dynamic polarizabilities of the jellium atom are deduced using time-dependent linear response theory in a local density approximation as formulated by Stott and Zaremba. The calculation is extended to include the intervening elements In, Xe, Cs, and Ba. The calculation demonstrates how the Lindhard dielectric function can be modified to apply to non-simple metals treated in the jellium model. 展开更多
关键词 INFRARED Polarizability JELLIUM TRANSITION metalS rare-earth metalS Electron SELF-INTERACTION Correction
下载PDF
Neutron Diffraction Study of Self-Curing and Self-Crystallization Phenomena of Low-Temperature Dehydrogenating Products of Powder Crystals of Rare-Earth Metals Trihydroxides
3
作者 Khidirov Irisali 《Journal of Crystallization Process and Technology》 2013年第4期156-162,共7页
The phenomenon of hydrogen thermoemission out of a crystal lattice of powder rare-earth metals trihydrooxides R(OH)3 (R is La, Pr, Nd) was found. The hydrogen thermoemission out of a crystal lattice is partial or full... The phenomenon of hydrogen thermoemission out of a crystal lattice of powder rare-earth metals trihydrooxides R(OH)3 (R is La, Pr, Nd) was found. The hydrogen thermoemission out of a crystal lattice is partial or full removal of hydrogen out of the crystal lattice of powder hydrogen-containing crystal without change of symmetry of such crystal at continuous evacuation of high vacuum at evacuation temperature of Тev. which is lower than recrystallization Тrecrys. or disintegration (Tdisinteg.) temperature of this crystal: Тev. Тrecrys. Tdisineg.. By neutron diffraction it is found that low- temperature (Тevacuation = 400 - 420 K ) removal of hydrogen (by hydrogen thermoemission) out of a crystal lattice of trihydrooxide R(OH)3 under continuous high vacuum evacuating makes possible to obtain metastable “trioxide” R[O]3. Existence of such substance contradicts to the valence law (oxygen is bivalent and Pr is trivalent in hydroxides). Such “trioxide” has a superfluous negative charge: R3+O6-. So they aspire to “capture” three more protons (hydrogen ions) from a water molecules. Obviously, this substance can be stable at low temperatures and in the mediums, which are not containing hydrogen. In the air at room temperature this substance, most likely, interacting with water molecules, gradually again turns into trihydroxide R(OH)3, compensating the superfluous negative charge by three hydrogen atoms. From this it follows that substance R[O3] can simultaneously be an absorber of hydrogen and generator of oxygen at atmospheric conditions and in any mediums which contains water molecules, without any prior processing like heating or high pressure. Thus, the obtained material, without any prior processing like heating or high pressure, can simultaneously be oxygen generator and hydrogen accumulator in any mediums characteristic of R[O3] to transform into stable form R(OH)3 by selective bonding of hydrogen from the hydrogen-containing environment allowing implication of Pr[O3] as the hydrogen selective absorber. Separation (by low-temperature removal) of hydrogen out of R(OH)3 lattice can again lead to restoration of its capabilities to be a simultaneous hydrogen accumulator and oxygen generator in a medium containing water molecules. 展开更多
关键词 Hydrogen Termoemission rare-earth metals Trihydrooxides Neutron Diffraction High Vacuum Continuous EVACUATION METASTABLE “Trioxide” R[O3]
下载PDF
Cycloaddition Reactions of Epoxides and CO_(2)Catalyzed by Bifunctional Rare-Earth Metal Complexes Bearing Amino-Bridged Tris(phenolato)Ligands
4
作者 Yongjie Chen Yanwei Wang +2 位作者 Jun Nong Dan Yuan Yingming Yao 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2024年第14期1571-1581,共11页
Eight zwitterionic rare earth metal complexes stabilized by amino-bridged tris(phenolato)ligands bearing quaternary ammonium side-arms were synthesized and characterized.These complexes were used as single-component c... Eight zwitterionic rare earth metal complexes stabilized by amino-bridged tris(phenolato)ligands bearing quaternary ammonium side-arms were synthesized and characterized.These complexes were used as single-component catalysts for the cycloaddition of CO_(2)and epoxides,and their catalytic activities are obviously higher than those of their binary analogues.Further studies revealed that the halide anions(Cl^(–),Br^(–),I^(–))and the metal complexes influenced the catalytic activity,and the lanthanum complex bearing iodide anion showed the highest catalytic activity for this addition reaction.A variety of mono-substituted epoxides were converted to cyclic carbonates in good to excellent yields(55%—99%)with high selectivity(>99%)at 30℃and 1 bar CO_(2),whereas internal epoxides required higher both reaction temperatures(60—120℃)and catalyst loading(2 mol%)for high yields.The catalyst was recyclable for four times without noticeable loss of catalytic activity.Based on the results of kinetic studies and in℃situ IR reactions,a plausible reaction mechanism was proposed. 展开更多
关键词 Bifunctional catalyst Carbon dioxide Cyclic carbonate rare-earth metal Tris(phenolato)ligand Insertion Cycloaddition C1 building blocks
原文传递
Regio-and Stereoselective Polymerization of Bio-based Ocimene by Rare-Earth Metal Catalysts
5
作者 Qi-Yuan Wang Li-Peng Sang +5 位作者 Zhen Zhang Yang Jiang Hui Tian Xia Zhao Xiang Guo Shi-Hui Li 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第2期223-229,I0008,共8页
Coordination polymerization of renewable β-ocimene has been investigated using asymmetric diiminophosphinate lutetium complex1, β-diketiminate yttrium complex 2, bis(phosphino)carbazolide yttrium complex 3, half-san... Coordination polymerization of renewable β-ocimene has been investigated using asymmetric diiminophosphinate lutetium complex1, β-diketiminate yttrium complex 2, bis(phosphino)carbazolide yttrium complex 3, half-sandwich benzyl fluorenyl scandium complex 4 and pyridyl-methylene-fluorenyl rare-metal complexes 5a–5c. Complexes 1, 4 and 5a–5c show trans-1,2-regioselectivities and high activities, of which 5c exhibits excellent isoselectivity(mmmm>99%). Conversely, complexes 2 and 3 promote β-ocimene polymerization to produce isotactic cis-1,4-polyocimenes(cis-1,4>99%, mm>95%). Diblock copolymers cis-1,4-PIP-block-cis-1,4-POc and cis-1,4-PBD-block-cis-1,4-POc are obtained in one-pot reactions of β-ocimene with isoprene and butadiene using complex 3. Epoxidation and hydroxylation of polyocimene afford functionalized polyolefins with enhanced T_(g)(from-20 ℃ to 79 ℃ and 74 ℃) and hydrophilicity. 展开更多
关键词 Biobased monomer TERPENES OCIMENE rare-earthS Polymerization Regio/stereoselectivity Elastomer
原文传递
Synthesis of pyrrolidinyl-ethylene fluorenyl rare-earth metal complexes and catalysis for 2-vinylpyridine polymerization 被引量:1
6
作者 Yinjun Wang Hao Jiang +1 位作者 Huifei Wang Zehuai Mou 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第3期381-387,I0003,共8页
The metathesis reaction between pyrrolidinyl-ethylene fluorenyl lithium salts with in situ prepared cationic rare-earth metal dialkyl species[Ln(CH_(2)SiMe_(3))_(2)(THF)_(x)][BPh_(4)]afford efficiently the correspondi... The metathesis reaction between pyrrolidinyl-ethylene fluorenyl lithium salts with in situ prepared cationic rare-earth metal dialkyl species[Ln(CH_(2)SiMe_(3))_(2)(THF)_(x)][BPh_(4)]afford efficiently the corresponding constrained-geometry complexes L^(1)Ln(CH_(2)SiMe_(3))_(2)(L^(1)=FluCH_(2)CH_(2)NC_(4)H_(8),Ln=Y(1a),Lu(1b),Sc(1c))and L^(2)Ln(CH_(2)SiMe_(3))_(2)(L^(2)=(2,7-di-tert-butyl)FluCH_(2)CH_(2)NC_(4)H_(8),Ln=Y(2a),Lu(2b),Sc(2c))in good yields.All these complexes were characterized by NMR spectroscopy,and the solid-state molecular structure of yttrium complex 1a was defined with single-crystal X-ray diffraction analysis.The catalytic performance of these complexes towards 2-vinylpyridine polymerization was investigated,where these complexes alone can efficiently promote the polymerization of 2-vinylpyridine giving isotactic poly(2-vinylpyridine).Upon the activation with[Ph_(3)C][B(C_(6)F_(5))_(4)],the yttrium and lutetium complexes also afford isotactic poly(2-vinylpyridine),while the scandium complexes produce syndiotactic poly(2-vinylpyridine). 展开更多
关键词 rare-earth metal Constrained-geometry complex 2-VINYLPYRIDINE Stereoselective polymerization
原文传递
Unusual selective reactivity of the rare-earth metal complexes bearing a ligand with multiple functionalities
7
作者 Dongjing Hong Thayalan Rajeshkumar +5 位作者 Shan Zhu Zeming Huang Shuangliu Zhou Xiancui Zhu Laurent Maron Shaowu Wang 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第1期117-126,共10页
Ligands play a key role in controlling activity of organometallic complexes so that development of new ligands to overcome the challenge is the main topic of modern chemistry.The first example of 1,1-hydride migratory... Ligands play a key role in controlling activity of organometallic complexes so that development of new ligands to overcome the challenge is the main topic of modern chemistry.The first example of 1,1-hydride migratory insertion and intramolecular redox reaction has been realized in this work by applying a new ligand in rare-earth metal chemistry.The novel rare-earth metal complexes L^(Mes)RECH2TMS(THF)(RE=Y(1a),Dy(1b),Er(1c),Yb(1d),L^(Mes)=1-(3-(2,6-iPr_(2)C_(6)H_(3)N=CH)C8H4N)-CH_(2)CH_(2)-3-(2-CH2–4,6-Me_(2)C_(6)H_(2))-(N(CH)_(2)NC),THF=tetrahydrofuran)bearing a ligand with imino,indolyl,NHC(N-heterocyclic carbene)multiple functionalities were synthesized and characterized.Treatment of complexes 1 with silanes(PhSiH3or PhSiH2Me or PhSiD3)selectively produced the unprecedented 1,1-hydride(or deuterated H)migratory insertion of the indolyl moiety of the novel unsymmetrical dinuclear rare-earth metal complexes 2.The complex 2a reacts with Ph_(2)C=O to give the selective C=O double bond insertion to the RE–Co-methylene-Mesbond product 3a which further reacts with another Ph_(2)C=O(or DMAP,4-N,N-dimethylaminopyridine)affording the novelμ-η^(2):η^(3)-dianionic 3-iminoindolyl dinuclear rare-earth metal complex 4a.The latter is formed through an unusual intramolecular redox reaction(through electron migration from the 2-carbanion of the indolyl ring to the imino motif)resulting in the re-aromatization of the indolyl ring. 展开更多
关键词 rare-earth metal complexes INDOLE N-heterocyclic carbene Fischer-type carbene 1 1-migratory insertion dianionic 3-iminoindolyl
原文传递
Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions 被引量:4
8
作者 Rose Anne Acedera Alicia Theresse Dumlao +4 位作者 DJ Donn Matienzo Maricor Divinagracia Julie Anne del Rosario Paraggua Po-Ya Abel Chuang Joey Ocon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期646-669,I0014,共25页
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts... Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested. 展开更多
关键词 OER HER Transition metal phosphide Templated synthesis ELECTROCATALYSTS
下载PDF
Towards advanced zinc anodes by interfacial modification strategies for efficient aqueous zinc metal batteries 被引量:1
9
作者 Changchun Fan Weijia Meng Jiaye Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期79-110,I0003,共33页
Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,hi... Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs. 展开更多
关键词 Aqueous zinc metal batteries Zinc metal anode Interfacial modification Artificial interfacial coating In-situ interfacial coating
下载PDF
On the thermodynamics of plasticity during quasi-isentropic compression of metallic glass 被引量:1
10
作者 Kaiguo Chen Bo Chen +7 位作者 Yinan Cui Yuying Yu Jidong Yu Huayun Geng Dongdong Kang Jianhua Wu Yao Shen Jiayu Dai 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第2期74-89,共16页
Entropy production in quasi-isentropic compression (QIC) is critically important for understanding the properties of materials under extremeconditions. However, the origin and accurate quantification of entropy in thi... Entropy production in quasi-isentropic compression (QIC) is critically important for understanding the properties of materials under extremeconditions. However, the origin and accurate quantification of entropy in this situation remain long-standing challenges. In this work, a framework is established for the quantification of entropy production and partition, and their relation to microstructural change in QIC. Cu50Zr50is taken as a model material, and its compression is simulated by molecular dynamics. On the basis of atomistic simulation-informed physicalproperties and free energy, the thermodynamic path is recovered, and the entropy production and its relation to microstructural change aresuccessfully quantified by the proposed framework. Contrary to intuition, entropy production during QIC of metallic glasses is relativelyinsensitive to the strain rate ˙γ when ˙γ ranges from 7.5 × 10^(8) to 2 × 10^(9)/s, which are values reachable in QIC experiments, with a magnitudeof the order of 10^(−2)kB/atom per GPa. However, when ˙γ is extremely high (>2 × 10^(9)/s), a notable increase in entropy production rate with˙γ is observed. The Taylor–Quinney factor is found to vary with strain but not with strain rate in the simulated regime. It is demonstrated thatentropy production is dominated by the configurational part, compared with the vibrational part. In the rate-insensitive regime, the increase inconfigurational entropy exhibits a linear relation to the Shannon-entropic quantification of microstructural change, and a stretched exponential relation to the Taylor–Quinney factor. The quantification of entropy is expected to provide thermodynamic insights into the fundamentalrelation between microstructure evolution and plastic dissipation. 展开更多
关键词 ENTROPY metalLIC REGIME
下载PDF
Surface Metallization of Glass Fiber(GF)/Polyetheretherketone(PEEK) Composite with Cu Coatings Deposited by Magnetron Sputtering and Electroplating 被引量:1
11
作者 钟利 金凡亚 +2 位作者 朱剑豪 TONG Honghui DAN Min 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期213-220,共8页
Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), sc... Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), scanning electron microscopy(SEM), and electron backscatter diffraction(EBSD).The coating bonding strength is assessed by pull-out tests and scribing in accordance with GB/T 9286-1998.The results show that the Cu coating with a thickness of 30 μm deposited on GF/PEEK by magnetron sputtering has lower roughness, finer grain size, higher crystallinity, as well as better macroscopic compressive stress,bonding strength, and electrical conductivity than the Cu coating deposited by electroplating. 展开更多
关键词 surface metallization Cu coating magnetron sputtering ELECTROPLATING
下载PDF
Endoscopic-ultrasound-guided biliary drainage with placement of electrocautery-enhanced lumen-apposing metal stent for palliation of malignant biliary obstruction:Updated meta-analysis 被引量:6
12
作者 Zu-Xiang Peng Fang-Fang Chen +5 位作者 Wen Tang Xu Zeng Hong-Juan Du Ru-Xian Pi Hong-Ming Liu Xiao-Xiao Lu 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第3期907-920,共14页
BACKGROUND Endoscopic ultrasound-guided biliary drainage using electrocautery-enhanced(ECE)delivery of lumen-apposing metal stent(LAMS)is gradually being re-cognized as a viable palliative technique for malignant bili... BACKGROUND Endoscopic ultrasound-guided biliary drainage using electrocautery-enhanced(ECE)delivery of lumen-apposing metal stent(LAMS)is gradually being re-cognized as a viable palliative technique for malignant biliary obstruction after endoscopic retrograde cholangiopancreatography(ERCP)failure.However,most of the studies that have assessed its efficacy and safety were small and hetero-geneous.Prior meta-analyses of six or fewer studies that were published 2 years ago were therefore underpowered to yield convincing evidence.AIM To update the efficacy and safety of ECE-LAMS for treatment of biliary ob-struction after ERCP failure.METHODS We searched PubMed,EMBASE,and Scopus databases from the inception of the ECE technique to May 13,2022.Primary outcome measure was pooled technical success rate,and secondary outcomes were pooled rates of clinical success,re-intervention,and adverse events.Meta-analysis was performed using a random-effects model following Freeman-Tukey double-arcsine transformation in R soft-ware(version 4.1.3).RESULTS Fourteen eligible studies involving 620 participants were ultimately included.The pooled rate of technical success was 96.7%,and clinical success was 91.0%.Adverse events were reported in 17.5%of patients.Overall reinter-vention rate was 7.3%.Subgroup analyses showed results were generally consistent.CONCLUSION ECE-LAMS has favorable success with acceptable adverse events in relieving biliary obstruction when ERCP is impossible.The consistency of results across most subgroups suggested that this is a generalizable approach. 展开更多
关键词 Biliary obstruction Biliary drainage Electrocautery-enhanced lumen-apposing metal stents Endoscopic ultrasound Endoscopic retrograde cholangiopancreatography failure
下载PDF
Laser‑Induced and MOF‑Derived Metal Oxide/Carbon Composite for Synergistically Improved Ethanol Sensing at Room temperature 被引量:1
13
作者 Hyeongtae Lim Hyeokjin Kwon +2 位作者 Hongki Kang Jae Eun Jang Hyuk‑Jun Kwon 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期210-220,共11页
Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing... Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices. 展开更多
关键词 metal-organic frameworks metal oxide Carbon composite LASER Gas sensor
下载PDF
Corrosion and in vitro cytocompatibility investigation on the designed Mg-Zn-Ag metallic glasses for biomedical application 被引量:1
14
作者 Jian Wang Lingzhong Meng +6 位作者 Weixin Xie Chen Ji Ronghua Wang Pinghu Zhang Liling Jin Liyuan Sheng Yufeng Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1566-1580,共15页
In the present work,seven Mg-Zn-Ag alloys with the nominal composition of Mg_(96-x)Zn_(x)Ag_(4)(x=17,20,23,26,29,32,35 in at.%)were prepared by induction melting and single-roller melt-spinning.The X-ray diffraction(X... In the present work,seven Mg-Zn-Ag alloys with the nominal composition of Mg_(96-x)Zn_(x)Ag_(4)(x=17,20,23,26,29,32,35 in at.%)were prepared by induction melting and single-roller melt-spinning.The X-ray diffraction(XRD)analyses indicate the metallic glasses with three composition of Mg_(73)Zn_(23)Ag_(4),Mg_(70)Zn_(26)Ag_(4),and Mg_(67)Zn_(29)Ag_(4)were obtained successfully.The differential scanning calorimetry(DSC)measurement was used to obtain the characteristic temperature of Mg-Zn-Ag metallic glasses for the glass-forming ability analysis.The maximum glass transition temperature(Trg)was found to be 0.525 with a composition close to Mg_(67)Zn_(29)Ag_(4),which results in the best glass-forming ability.Moreover,the immersion test in simulated body fluid(SBF)demonstrate the relative homogeneous corrosion behavior of the Mg-Zn-Ag metallic glasses.The corrosion rate of Mg-Zn-Ag metallic glasses in SBF solution decreases with the increase of Zn content.The sample Mg_(67)Zn_(29)Ag_(4)has the lowest corrosion rate of 0.19mm/yr,which could meet the clinical application requirement well.The in vitro cell experiments show that the Madin-Darby canine kidney(MDCK)cells cultured in sample Mg_(67)Zn_(29)Ag_(4)and its extraction medium have higher activity.However,the Mg-Zn-Ag metallic glasses exhibit obvious inhibitory effect on human rhabdomyosarcoma(RD)tumor cells.The present investigations on the glass-forming ability,corrosion behavior,cytocompatibility and tumor inhibition function of the Mg-Zn-Ag based metallic glass could reveal their biomedical application possibility. 展开更多
关键词 metallic glasses Mg-Zn-Ag Corrosion behavior In vitro cytocompatibility
下载PDF
Oxygen functionalization-assisted anionic exchange toward unique construction of flower-like transition metal chalcogenide embedded carbon fabric for ultra-long life flexible energy storage and conversion 被引量:1
15
作者 Roshan M.Bhattarai Kisan Chhetri +5 位作者 Nghia Le Debendra Acharya Shirjana Saud Mai Cao Hoang Phuong Lan Nguyen Sang Jae Kim Young Sun Mok 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期72-93,共22页
The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag... The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications. 展开更多
关键词 carbon cloth energy conversion energy storage FLEXIBLE metal embedding ultra-stable
下载PDF
Electrolyte Design for Low‑Temperature Li‑Metal Batteries:Challenges and Prospects 被引量:1
16
作者 Siyu Sun Kehan Wang +3 位作者 Zhanglian Hong Mingjia Zhi Kai Zhang Jijian Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期365-382,共18页
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements ... Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries. 展开更多
关键词 Solid electrolyte interphase Li metal Low temperature Electrolyte design BATTERIES
下载PDF
Highly Efficient Aligned Ion‑Conducting Network and Interface Chemistries for Depolarized All‑Solid‑State Lithium Metal Batteries 被引量:2
17
作者 Yongbiao Mu Shixiang Yu +12 位作者 Yuzhu Chen Youqi Chu Buke Wu Qing Zhang Binbin Guo Lingfeng Zou Ruijie Zhang Fenghua Yu Meisheng Han Meng Lin Jinglei Yang Jiaming Bai Lin Zeng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期102-119,共18页
Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l... Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature. 展开更多
关键词 All-solid-state lithium metal batteries Composite solid electrolyte 3D printing Areal capacity Interfacial degradation
下载PDF
Lithium-Ion Charged Polymer Channels Flattening Lithium Metal Anode 被引量:2
18
作者 Haofan Duan Yu You +11 位作者 Gang Wang Xiangze Ou Jin Wen Qiao Huang Pengbo Lyu Yaru Liang Qingyu Li Jianyu Huang Yun‑Xiao Wang Hua‑Kun Liu Shi Xue Dou Wei‑Hong Lai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期379-393,共15页
The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein... The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth.Resolving this issue will be key to achieving high-performance lithium metal batteries(LMBs).Herein,we construct a lithium nitrate(LiNO_(3))-implanted electroactiveβphase polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP)crystalline polymorph layer(PHL).The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels.These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes,decreasing the growth of lithium dendrites.The stretched molecular channels can also accelerate the transport of Li ions.The combined effects enable a high Coulombic efficiency of 97.0%for 250 cycles in lithium(Li)||copper(Cu)cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm^(-2)with ultrahigh Li utilization of 50%.Furthermore,the full cell coupled with PHL-Cu@Li anode and Li Fe PO_(4) cathode exhibits long-term cycle stability with high-capacity retention of 95.9%after 900 cycles.Impressively,the full cell paired with LiNi_(0.87)Co_(0.1)Mn_(0.03)O_(2)maintains a discharge capacity of 170.0 mAh g^(-1)with a capacity retention of 84.3%after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83.This facile strategy will widen the potential application of LiNO_(3)in ester-based electrolyte for practical high-voltage LMBs. 展开更多
关键词 Polymer ionic channel Li metal batteries Artificial protective layer Uniform Li deposition Electrochemical performances
下载PDF
Recent advances in transition metal phosphide materials:Synthesis and applications in supercapacitors 被引量:1
19
作者 Ge Li Yu Feng +3 位作者 Yi Yang Xiaoliang Wu Xiumei Song Lichao Tan 《Nano Materials Science》 EI CAS CSCD 2024年第2期174-192,共19页
Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient elec... Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage. 展开更多
关键词 Transition metal phosphides Cobalt phosphide Nickel phosphides Electrode materials SUPERCAPACITOR
下载PDF
Flexible, Transparent and Conductive Metal Mesh Films with Ultra‑High FoM for Stretchable Heating and Electromagnetic Interference Shielding 被引量:1
20
作者 Zibo Chen Shaodian Yang +9 位作者 Junhua Huang Yifan Gu Weibo Huang Shaoyong Liu Zhiqiang Lin Zhiping Zeng Yougen Hu Zimin Chen Boru Yang Xuchun Gui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期201-213,共13页
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan... Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications. 展开更多
关键词 metal mesh Transparent conductive film Stretchable heater Electromagnetic interference shielding
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部