The small muddy areas developed in the southern Shandong Peninsula have attracted increasing attention from researchers because of complex changes in sediment sources driven by sea-level fluctuations and land-sea inte...The small muddy areas developed in the southern Shandong Peninsula have attracted increasing attention from researchers because of complex changes in sediment sources driven by sea-level fluctuations and land-sea interactions since the late Pleistocene.This study investigates the evolution of sediment sources and their responses to environmental changes since the late Pleistocene,using core WHZK01 collected from the nearshore muddy area in southern Weihai for rare earth element(REE)analysis.In doing so,this work highlights the changing patterns of material sources and the primary control factors.The results reveal that the sedimentary deposits in core WHZK01 exhibit distinct terrestrial characteristics.Discriminant function analysis(F_(D))and source discrimination dia-grams both suggest that the primary sources of these deposits are the Yellow River and adjacent small and medium-sized rivers,although the sources vary among different sedimentary units.Furthermore,the DU3 layer(17.82-25.10 m)displays typical riverine sedimentation,dominated by terrestrial detrital input,primarily from the local rivers,namely the Huanglei and Muzhu Rivers.The material in the DU2 layer(14.91-17.82 m)is mainly influenced by a mixture of the Qinglong and Yellow Rivers.The DU1 layer(0-14.91 m)is influenced by sea-level changes during the Holocene,with the Yellow River being the primary source,although there is also some input from local rivers.The changes in sea level during the Holocene and the input of Yellow River material carried by the coastal currents of the Yellow Sea are identified as the main controlling factors for the changes in material sources in the study area since the late Pleistocene,with small and mediumsized rivers also exerting some influence on the material sources.The above mentioned findings not only contribute to a better understanding of the source-sink systems of the Yellow River and adjacent small and mediumsized rivers but also deepen our understanding of the late Quaternary land-sea interactions in the Shandong Peninsula.展开更多
Objective The study aimed to investigate the impact of rare earth elements(REEs)exposure on pregnancy outcomes of in vitro fertilization-embryo transfer(IVF-ET)by analyzing samples from spouses.Methods A total of 141 ...Objective The study aimed to investigate the impact of rare earth elements(REEs)exposure on pregnancy outcomes of in vitro fertilization-embryo transfer(IVF-ET)by analyzing samples from spouses.Methods A total of 141 couples were included.Blood and follicular fluid from the wives and semen plasma from the husbands,were analyzed for REEs using inductively coupled plasma mass spectrometry(ICP-MS).Spearman's correlation coefficients and the Mann–Whitney U test were used to assess correlations and compare REE concentrations among three types of samples,respectively.Logistic models were utilized to estimate the individual REE effect on IVF-ET outcomes,while BKMR and WQS models explored the mixture of REE interaction effects on IVF-ET outcomes.Results Higher La concentration in semen(median 0.089 ng/mL,P=0.03)was associated with a lower fertilization rate.However,this effect was not observed after artificial selection intervention through intracytoplasmic sperm injection(ICSI)(P=0.27).In semen,the REEs mixture did not exhibit any significant association with clinical pregnancy.Conclusion Our study revealed a potential association between high La exposure in semen and a decline in fertilization rate,but not clinical pregnancy rate.This is the first to report REEs concentrations in follicular fluid with La,Ce,Pr,and Nd found at significantly lower concentrations than in serum,suggesting that these four REEs may not accumulate in the female reproductive system.However,at the current exposure levels,mixed REEs exposure did not exhibit reproductive toxicity.展开更多
Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,wit...Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys.展开更多
We performed thermal simulation experiments of double-pass deformation of hypereutectoid rails with different microalloying elements at a cooling rate of 1℃/s and deformation of 80%to explore the influence of rare-ea...We performed thermal simulation experiments of double-pass deformation of hypereutectoid rails with different microalloying elements at a cooling rate of 1℃/s and deformation of 80%to explore the influence of rare-earth and microalloying elements on the structure of hypereutectoid rails and optimize the composition design of hypereutectoid rails.Scanning electron microscopy,transmission electron microscopy,X-ray diffraction,and other characterization techniques were employed to quantitatively analyzed the effects of different microalloying elements,including rare-earth elements,on pearlite lamellar spacing,cementite characteristics,and dislocation density.It was found that the lamellar spacing was reduced by adding various microalloying elements.Cementite lamellar thickness decreased with the refinement of pearlite lamellar spacing while the cementite content per unit volume increased.Local cementite spheroidization,dispersed in the ferrite matrix in granular form and thus playing the role of dispersion strengthening,was observed upon adding cerium(Ce).The contributions of dislocation density to the alloy strength of four steel sheet samples with and without the addition of nickel,Ce,and Ce–copper(Cu)composite were 26,27,32,and 37 MPa,respectively,indicating that the Ce–Cu composite had the highest dislocation strengthening effect.The Ce–Cu composite has played a meaningful role in the cementite characteristics and dislocation strengthening,which provides a theoretical basis for optimizing the composition design of hypereutectoid rails in actual production conditions.展开更多
Minerals and trace elements content and concentration in marine algae vary depending on species morphology and physiology;as well as growing environmental conditions. Despite this variability, accumulation of magnesiu...Minerals and trace elements content and concentration in marine algae vary depending on species morphology and physiology;as well as growing environmental conditions. Despite this variability, accumulation of magnesium, and especially iron, seems to be common in Chlorophyta;while Rhodophyta and Heterokontophyta show higher affinity to manganese. The red agarophyte Alsidium triquetrum was used to analyze the relationship between metal concentration, environmental conditions and growth rate. Specimens grown in situ showed a large variability of Fe, Mn, Mg, and Al, in thallus tissue concentrations. Further, a compelling relationship between the growth rate and the thallus concentration of Mg and Mn, Zn, and Al was detecte. Manganese, unlike the other trace elements analyzed showed a positive linear relationship between growth rate and tissue content during the period of greatest vegetative growth.展开更多
The present work assesses the temporal distribution pattern and geochemical changes of rare earth elements and Yttrium, Scandium, Thorium, and Uranium delivery into the Oualidia lagoon. Two sediment cores were retriev...The present work assesses the temporal distribution pattern and geochemical changes of rare earth elements and Yttrium, Scandium, Thorium, and Uranium delivery into the Oualidia lagoon. Two sediment cores were retrieved from the Oualidia lagoon and analyzed using neutron activation analysis. The results indicated that heavy rare earth elements are slightly enriched the sediment cores over light rare earth elements. The highest values of REEs were recorded in the top layers of the cores and depleted with depth, suggesting a possible change in factors controlling their accumulation, including mechanical, chemical, and environmental parameters such as weathering intensity, grain size, and Fe-Mn oxides. The sediments display positive Ce anomalies, which are probably related to the submarine weathering process and detrital input. Noting also the variation of hydrodynamics conditions and confinement of the upstream part of the lagoon played a key role in changing the sediment origins.Thus, further investigation of REEs origin in the Oualidia lagoon sediment is required to identify their sources,provenances, and the factors controlling their spatial and vertical distributions. However, these results provide baseline data of occurring changes in REEs geochemical composition and constitute a typical study case to understand the link between sedimentary and geochemistry processes in a lagoonal ecosystem.展开更多
Adsorption and desorption of exogenous rare earth elements (REE) in soils were studied.Results showed that soils had strong adsorbability for REE and the rate of adsorption of REE was over 95% of the added REE in thes...Adsorption and desorption of exogenous rare earth elements (REE) in soils were studied.Results showed that soils had strong adsorbability for REE and the rate of adsorption of REE was over 95% of the added REE in these tests.The characteristics of adsorption isotherms corresponded well with the both Freundlich and Temkin equations,but deviated from the Langmuir equation.The adsorption of REE tended to increase with the rising of soil pH.A sequential extraction method used for studing the desorption and distribution of REE sorbed in soils are also discussed.展开更多
The effect of four kinds of rare earth elements on the depositing rate of Ni-based alloy brush plating coatings was investigated. The results indicate that all of the selected rare earth elements increase the depositi...The effect of four kinds of rare earth elements on the depositing rate of Ni-based alloy brush plating coatings was investigated. The results indicate that all of the selected rare earth elements increase the depositing rate of Ni-based alloy coatings, and Sm increases the depositing rate most obviously. There is an optimum amount of rare earth addition in the plating solution. With the change of plating voltage to a certain extent, the results reveal no differences. The mechanism of the increase of the depositing rate was analyzed.展开更多
[Objective] This study aimed to investigate the residues of rare earth ele-ments in Guangxi banana from banana-producing area with application of rare earth fertilizers and evaluate the safety of using rare earth fert...[Objective] This study aimed to investigate the residues of rare earth ele-ments in Guangxi banana from banana-producing area with application of rare earth fertilizers and evaluate the safety of using rare earth fertilizers in banana production. [Method] HNO3+H2O2 mixed acid system with high pressure airtight microwave di-gestion sample pretreatment method and ICP-MS technology were used, to establish a determination method of 16 rare earth elements in banana samples, including Sc45, Y89, La139, Ce140, Pr141, Sm147, Eu153, Gb157, Tb159, Nd144, Dy163, Ho165, Er166, Tm169, Yb172 and Lu175. [Result] Different standard curves present-ed good linearity. Detection limit of the instrument was 0.002-0.01 μg/L; detection limit of the method was 0.1-0.6 μg/kg; recovery rate of standard addition was 94.5%-116%; relative standard deviation was 2.02%-14.21%. [Conclusion] This method has many advantages, such as simple mass spectrogram, high sensitivity and high selectivity, accurate quantification, high precision and accuracy, simple operation, high reproducibility and high recovery rate, which is suitable for the detection of rare earth elements in banana and other fruits, with certain theoretical and applicable val-ue for guiding banana production and high-efficient planting.展开更多
With the introduction of Poisson's ratio in the expression of Young's modulus,nearly all the theoretical values of the various elastic moduli for the alkaline earth metals and rare earth elements can be greatl...With the introduction of Poisson's ratio in the expression of Young's modulus,nearly all the theoretical values of the various elastic moduli for the alkaline earth metals and rare earth elements can be greatly refined, with the single exception of the theoreticalvalue of Young's modulus for Pr which is slightly increased This points to the validityof the new theory, that the bulk modulus is independent of the Poisson's ratio, and further that the valency electron structures of solids as determined by Yu's theory are correct.展开更多
The hot deformation behavior of Mn18Cr18N and Mn18Cr18N+Ce high nitrogen austenitic stainless steels at 1173-1473 K and 0.01-1 s^(-1) were investigated by thermal compression tests.The influence mechanism of Ce on the...The hot deformation behavior of Mn18Cr18N and Mn18Cr18N+Ce high nitrogen austenitic stainless steels at 1173-1473 K and 0.01-1 s^(-1) were investigated by thermal compression tests.The influence mechanism of Ce on the hot deformation behavior was analyzed by Ce-containing inclusions and segregation of Ce.The results show that after the addition of Ce,large,angular,hard,and brittle inclusions(TiN-Al_(2)O_(3),TiN,and Al_(2)O_(3)) can be modified to fine and dispersed Ce-containing inclusions(Ce-Al-O-S and TiN-Ce-Al-O-S).During the solidification,Ce-containing inclusions can be used as heterogeneous nucleation particles to refine as-cast grains.During the hot deformation,Ce-containing inclusions can pin dislocation movement and grain boundary migration,induce dynamic recrystallization(DRX)nucleation,and avoid the formation and propagation of micro cracks and gaps.In addition,during the solidification,Ce atoms enrich at the front of solid-li-quid interface,resulting in composition supercooling and refining the secondary dendrites.Similarly,during the hot deformation,Ce atoms tend to segregate at the boundaries of DRX grains,inhibiting the growth of grains.Under the synergistic effect of Ce-containing inclusions and Ce segregation,although the hot deformation resistance and hot deformation activation energy are improved,DRX is more likely to occur and the size of DRX grains is significantly refined,and the problem of hot deformation cracking can be alleviated.Finally,the microhardness of the samples was measured.The results show that compared with as-cast samples,the microhardness of hot-deformed samples increases signific-antly,and with the increase of DRX degree,the microhardness decreases continuously.In addition,Ce can affect the microhardness of Mn18Cr18N steel by affecting as-cast and hot deformation microstructures.展开更多
Petrogenesis of lacustrine dolostone is closely related with paleo-lake water conditions.Here we report the high spatial-resolution petrographic and geochemical results of a lacustrine dolomite nodule from the Qingsha...Petrogenesis of lacustrine dolostone is closely related with paleo-lake water conditions.Here we report the high spatial-resolution petrographic and geochemical results of a lacustrine dolomite nodule from the Qingshankou Formation,the Songliao Basin.Sedimentary and elemental signatures confirm the protogenetic origin of this nodule and its effectiveness in recording geochemical characteristics of paleo-lake water during dolomitization.The low Y/Ho ratios,middle rare earth element(MREE)enrichment and subtle positive Eu anomalies within the nodule indicate a fresh water source.However,the Sr isotope values in the core of the nodule(0.7076-0.7080)are close to contemporaneous seawater(0.7074),yet different from the modern river(0.7120)and the host black shale(0.7100).On the premise of excluding the influence of hydrothermal fluids,the significantly low strontium isotope values of the lacustrine dolomite might be caused by seawater interference during dolomitization.Our findings demonstrate that lacustrine dolomite within black shales is not only a faithful tracer of diagenetic water environment,but also a novel and easily identified mineralogical evidence for episodic seawater intrusion event(91 Ma)in the Songliao Basin,which supplements other paleontological and geochemical evidence.展开更多
Load transformation from the yielding part of the soil to the adjacent part is known as the soil arching effect,which plays an important role in the design of various geotechnical infrastructures.Terzaghi’s trapdoor ...Load transformation from the yielding part of the soil to the adjacent part is known as the soil arching effect,which plays an important role in the design of various geotechnical infrastructures.Terzaghi’s trapdoor test was an importantmilestone in the development of theories on soil arching.The research on earth pressure of the trapdoor problem is presented in this paper using the three-dimensional(3D)discrete element method(DEM).Five 3D trapdoor models with different heights are established by 3DDEMsoftware PFC 3D.The variation of earth pressure on the trapdoor with the downward movement of the trapdoor,the distribution of vertical earth pressure along the horizontal direction,the distribution of vertical earth pressure along the vertical direction,the distribution of lateral earth pressure coefficient along the depth direction,the magnitude and direction of contact force chain are studied,respectively.Related research results show that the earth pressure on the trapdoor decreases rapidly after the downward movement of the trapdoor,and then reaches the minimum earth pressure.After that,the earth’s pressure will rise slightly,and whether this phenomenon occurs depends on the depth ratio.For the bottom soil,due to the stress transfer caused by the soil arching effect,the ratio of earth pressure in the loose area decreases,while the ratio of earth pressure in the stable area increases.With the trapdoor moving down,the vertical earth pressure along the depth in the stable zone is basically consistent with the initial state,which shows an approximate linear distribution.After the trapdoor moves down,the distribution of earth pressure along with the depth in the loose area changes,which is far less than the theoretical value of vertical earth pressure of its self-weight.Because of the compression of the soil on both sides,the lateral earth pressure coefficient of most areas on the central axis of the loose zone is close to the passive earth pressure coefficient Kp.The existence of a‘soil arch’can be observed intuitively from the distribution diagram of the contact force chain in the loose zone.展开更多
Trace elements and rare earth elements(REE) of the sulfide minerals were determined by inductively-coupled plasma mass spectrometry.The results indicate that V,Cu,Sn,Ga,Cd,In,and Se are concentrated in sphalerite,Sb...Trace elements and rare earth elements(REE) of the sulfide minerals were determined by inductively-coupled plasma mass spectrometry.The results indicate that V,Cu,Sn,Ga,Cd,In,and Se are concentrated in sphalerite,Sb,As,Ge,and Tl are concentrated in galena,and almost all trace elements in pyrite are low.The Ga and Cd contents in the light-yellow sphalerites are higher than that in the brown and the black sphalerites.The contents of Ge,Tl,In,and Se in brown sphalerites are higher than that in light-yellow sphalerites and black sphalerites.It shows that REE concentrations are higher in pyrite than in sphalerite,and galena.In sphalerites,the REE concentration decreases from light-yellow sphalerites,brown sphalerites,to black sphalerites.The ratios of Ga/In are more than 10, and Co/Ni are less than 1 in the studied sphalerites and pyrites,respectively,indicating that the genesis of the Tianqiao Pb-Zn ore deposit might belong to sedimentary-reformed genesis associated with hydrothermal genesis.The relationship between LnGa and LnIn in sphalerite,and between LnBi and LnSb in galena,indicates that the Tianqiao Pb-Zn ore deposit might belong to sedimentary-reformed genesis.Based on the chondrite-normalized REE patterns,δEu is a negative anomaly(0.13-0.88),andδCe does not show obvious anomaly(0.88-1.31);all the samples have low total REE concentrations(〈3 ppm) and a wide range of light rare earth element/high rare earth element ratios(1.12-12.35).These results indicate that the ore-forming fluids occur under a reducing environment.Comparison REE compositions and parameters of sphalerites,galenas,pyrites,ores,altered dolostone rocks,strata carbonates,and the pyrite from Lower Carboniferous Datang Formation showed that the ore-forming fluids might come from polycomponent systems,that is,different chronostratigraphic units could make an important contribution to the ore-forming fluids.Combined with the tectonic setting and previous isotopic geochemistry evidence,we conclude that the ore-deposit genesis is hydrothermal,sedimentary reformed,with multisources characteristics of ore-forming fluids.展开更多
Total of 23 bench samples were taken from the No. 7 Coal of Iqe Coalfield, Qinghai Province, China, following Chinese Standard Method GB/T 482-2008 (2008). These samples were analyzed by powder X-ray diffraction (...Total of 23 bench samples were taken from the No. 7 Coal of Iqe Coalfield, Qinghai Province, China, following Chinese Standard Method GB/T 482-2008 (2008). These samples were analyzed by powder X-ray diffraction (XRD), inductively coupled plasma mass spectrometry (ICP- MS) and X-ray fluorescence (XRF). The results indicate that the No. 7 Coal belongs to a low rank (Ro.ran =0.659%) and high-ash coal (40.54%). Compared to common Chinese and world low-rank coals, the lqe coal contains anomalous concentrations of rare metal elements, rare-scattered (dispersed) elements and rare earth elements. The highest contents of Rb, Cs, Ga and REY reach to 180, 26, 37, and 397 ppm, respectively. Their average contents of these elements are 10.9, 15, 4.8 and 3.5 times higher than those of world coals, respectively. Minerals in the coal include kaolinite, quartz, muscovite, siderite, and traces of rutile, and brookite. Kaolinite could be main host minerals of Rb, Cs, Ga and REY. The anomalous rare element Rb and Cs accumulation in the Iqe coal is related to both organic and inorganic matter. The REY concentrations may be related to circulation of thermal solutions, contained or sorbed by clayey particles, and organic matter as well.展开更多
A new type of rare earth elements (REEs) deposit was discovered from the gaolinite mudstone in the weathering crust of Permian basalt, Bijie region, western Guizhou, China. It contained ∑RE2O3 0.065%-1.086%. This t...A new type of rare earth elements (REEs) deposit was discovered from the gaolinite mudstone in the weathering crust of Permian basalt, Bijie region, western Guizhou, China. It contained ∑RE2O3 0.065%-1.086%. This type of REEs deposit was widely distributed with steady horizon and thickness of 3-4 m. The ore-bearing weathering crust (kaolinite) of the three discovered REEs deposits belonged to the third episode of the Emeishan basalt eruption. The new type of REEs deposit was suggested that basalt (tuff) weathering could lead to the enrichment of the rare earth elements. Therefore, it is of important economic significance to explore REEs deposits in the weathering crust of basalt (tuffs) in Yunnan, Guizhou, and Sichuan Provinces.展开更多
The rare earth elements are unusual when defining giant-sized ore deposits,as resources are often quoted as total rare earth oxide,but the importance of a deposit may be related to the grade for individual,or a limite...The rare earth elements are unusual when defining giant-sized ore deposits,as resources are often quoted as total rare earth oxide,but the importance of a deposit may be related to the grade for individual,or a limited group of the elements.Taking the total REE resource,only one currently known deposit(Bayan Obo) would class as giant(〉1.7×10^7 tonnes contained metal),but a range of others classify as large(〉1.7×10^6 tonnes).With the exception of unclassified resource estimates from the Olympic Dam 10 CG deposit,all of these deposits are related to alkaline igneous activity- either carbonatites or agpaitic nepheline syenites.The total resource in these deposits must relate to the scale of the primary igneous source,but the grade is a complex function of igneous source,magmatic crystallisation,hydrothermal modification and supergene enrichment during weathering.Isotopic data suggest that the sources conducive to the formation of large REE deposits are developed in subcontinental lithospheric mantle,enriched in trace elements either by plume activity,or by previous subduction.The reactivation of such enriched mantle domains in relatively restricted geographical areas may have played a role in the formation of some of the largest deposits(e.g.Bayan Obo).Hydrothermal activity involving fluids from magmatic to meteoric sources may result in the redistribution of the REE and increases in grade,depending on primary mineralogy and the availability of ligands.Weathering and supergene enrichment of carbonatite has played a role in the formation of the highest grade deposits at Mount Weld(Australia) and Tomtor(Russia).For the individual REE with the current highest economic value(Nd and the HREE),the boundaries for the large and giant size classes are two orders of magnitude lower,and deposits enriched in these metals(agpaitic systems,ion absorption deposits) may have significant economic impact in the near future.展开更多
Objective The aim of this survey was to investigate the level of contamination of the most consumed foods in China with 26 rare earth elements (REEs), and to provide the basic data for establishing and revising food...Objective The aim of this survey was to investigate the level of contamination of the most consumed foods in China with 26 rare earth elements (REEs), and to provide the basic data for establishing and revising food safety standards for REEs. Methods Sixteen REEs in foods were measured by inductively coupled plasma-mass spectrometry (ICP-MS) in the labs of the Centers for Disease Control and Prevention of four provinces and two municipalities, during 2009-2020. Results 2 231 samples were analyzed and 29 221 concentration data of 16 REEs were collected. The REEs levels in the investigated foods varied significantly. The concentrations of cerium (Ce), dysprosium (Dy), yttrium (Y), lanthanum (La), and neodymium (Nd) were relatively high, while the remaining eleven REEs were at low levels. The mean values of total rare earth element oxides (REOs) in cereals, fresh vegetables, fresh aquatic products, fresh meats and eggs varied from 0.052 mg/kg to 0.337 mg/kg. Conclusion 16 REEs in the major foods were at very low contamination levels in the investigated regions.展开更多
Studies were carried out on several aspects of rare earth elements (REEs), such as the theory and practice of their applications in agriculture, their geochemical behaviors in natural and agricultural ecosystems, th...Studies were carried out on several aspects of rare earth elements (REEs), such as the theory and practice of their applications in agriculture, their geochemical behaviors in natural and agricultural ecosystems, the mechanisms for the increase of crop yield using REE fertilizer, and their toxicology. However, limited knowledge was available for the transfer processes and the features and mechanisms of distribution and fractionations of REEs inside plants. The characteristics of REE fractionations in plants can be used to "trace" the pathway of REE transportation from soils (solution) to plants. A better understanding of the mechanisms of REE fractionations was helpful to investigate the controlling factors, including both the internal and the external ones. The characteristics and mechanisms of REE fractionations in plants and their significance were reviewed. Furthermore, the prospect for these fields was discussed, in hope of providing a new way in studying the bioavailability of REEs and heavy metals.展开更多
Influences of rare earth (RE) elements addition on thermal fatigue behaviors of AZ91 alloy were studied. Repeated heating and cooling cycles were applied on the samples at 170 and 210℃ to develop thermal fatigue cr...Influences of rare earth (RE) elements addition on thermal fatigue behaviors of AZ91 alloy were studied. Repeated heating and cooling cycles were applied on the samples at 170 and 210℃ to develop thermal fatigue cracks. Crack growth mechanisms and microstructural influences were investigated by optical and scanning electron microscopy (SEM) as well as energy dispersive X-ray spectroscopy (EDS). Thermal fatigue behaviors were observed to improve successively by addition of the RE up to 2wt.%. This improvement was attributed to the consummation of aluminum in melt by precipitation of the needle shaped AII1RE3 phases. This process was attributed to the reduction of MglTAl12 phase volume fraction and consequent decrease of the brittle Mg/MglTAl12 interface which was the main reason for weak thermal properties of the alloy at rather high temperatures. Further additions of RE, however, reduced the thermal shock resistance of the samples by increasing the mean length of the brittle needle shaped phases.展开更多
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2022MD114)the Project of Global Earth Observation on Asian Delta and Estuary Corresponding to Anthropogenic Impacts and Climate Changes(No.2019YFE0127200).
文摘The small muddy areas developed in the southern Shandong Peninsula have attracted increasing attention from researchers because of complex changes in sediment sources driven by sea-level fluctuations and land-sea interactions since the late Pleistocene.This study investigates the evolution of sediment sources and their responses to environmental changes since the late Pleistocene,using core WHZK01 collected from the nearshore muddy area in southern Weihai for rare earth element(REE)analysis.In doing so,this work highlights the changing patterns of material sources and the primary control factors.The results reveal that the sedimentary deposits in core WHZK01 exhibit distinct terrestrial characteristics.Discriminant function analysis(F_(D))and source discrimination dia-grams both suggest that the primary sources of these deposits are the Yellow River and adjacent small and medium-sized rivers,although the sources vary among different sedimentary units.Furthermore,the DU3 layer(17.82-25.10 m)displays typical riverine sedimentation,dominated by terrestrial detrital input,primarily from the local rivers,namely the Huanglei and Muzhu Rivers.The material in the DU2 layer(14.91-17.82 m)is mainly influenced by a mixture of the Qinglong and Yellow Rivers.The DU1 layer(0-14.91 m)is influenced by sea-level changes during the Holocene,with the Yellow River being the primary source,although there is also some input from local rivers.The changes in sea level during the Holocene and the input of Yellow River material carried by the coastal currents of the Yellow Sea are identified as the main controlling factors for the changes in material sources in the study area since the late Pleistocene,with small and mediumsized rivers also exerting some influence on the material sources.The above mentioned findings not only contribute to a better understanding of the source-sink systems of the Yellow River and adjacent small and mediumsized rivers but also deepen our understanding of the late Quaternary land-sea interactions in the Shandong Peninsula.
基金supported by the National Key Research and Development Program of China(2022YFC2702900 and 2021YFC2701103)National Natural Science Foundation of China(82171654)。
文摘Objective The study aimed to investigate the impact of rare earth elements(REEs)exposure on pregnancy outcomes of in vitro fertilization-embryo transfer(IVF-ET)by analyzing samples from spouses.Methods A total of 141 couples were included.Blood and follicular fluid from the wives and semen plasma from the husbands,were analyzed for REEs using inductively coupled plasma mass spectrometry(ICP-MS).Spearman's correlation coefficients and the Mann–Whitney U test were used to assess correlations and compare REE concentrations among three types of samples,respectively.Logistic models were utilized to estimate the individual REE effect on IVF-ET outcomes,while BKMR and WQS models explored the mixture of REE interaction effects on IVF-ET outcomes.Results Higher La concentration in semen(median 0.089 ng/mL,P=0.03)was associated with a lower fertilization rate.However,this effect was not observed after artificial selection intervention through intracytoplasmic sperm injection(ICSI)(P=0.27).In semen,the REEs mixture did not exhibit any significant association with clinical pregnancy.Conclusion Our study revealed a potential association between high La exposure in semen and a decline in fertilization rate,but not clinical pregnancy rate.This is the first to report REEs concentrations in follicular fluid with La,Ce,Pr,and Nd found at significantly lower concentrations than in serum,suggesting that these four REEs may not accumulate in the female reproductive system.However,at the current exposure levels,mixed REEs exposure did not exhibit reproductive toxicity.
基金supported by National Key Research and Development Program of China[2023YFB4605800]National Natural Science Foundation of China[51935014,52165043]+3 种基金JiangXi Provincial Natural Science Foundation of China[20224ACB204013,20224ACB214008]Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects[20225BCJ23008]Anhui Provincial Natural Science Foundation[2308085ME171]The University Synergy Innovation Program of Anhui Province[GXXT-2023-025,GXXT-2023-026].
文摘Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys.
基金the National Natural Science Foundation of China(No.51361021)the Inner Mongolia Science and Technology Major Project(No.ZDZX2018024)。
文摘We performed thermal simulation experiments of double-pass deformation of hypereutectoid rails with different microalloying elements at a cooling rate of 1℃/s and deformation of 80%to explore the influence of rare-earth and microalloying elements on the structure of hypereutectoid rails and optimize the composition design of hypereutectoid rails.Scanning electron microscopy,transmission electron microscopy,X-ray diffraction,and other characterization techniques were employed to quantitatively analyzed the effects of different microalloying elements,including rare-earth elements,on pearlite lamellar spacing,cementite characteristics,and dislocation density.It was found that the lamellar spacing was reduced by adding various microalloying elements.Cementite lamellar thickness decreased with the refinement of pearlite lamellar spacing while the cementite content per unit volume increased.Local cementite spheroidization,dispersed in the ferrite matrix in granular form and thus playing the role of dispersion strengthening,was observed upon adding cerium(Ce).The contributions of dislocation density to the alloy strength of four steel sheet samples with and without the addition of nickel,Ce,and Ce–copper(Cu)composite were 26,27,32,and 37 MPa,respectively,indicating that the Ce–Cu composite had the highest dislocation strengthening effect.The Ce–Cu composite has played a meaningful role in the cementite characteristics and dislocation strengthening,which provides a theoretical basis for optimizing the composition design of hypereutectoid rails in actual production conditions.
文摘Minerals and trace elements content and concentration in marine algae vary depending on species morphology and physiology;as well as growing environmental conditions. Despite this variability, accumulation of magnesium, and especially iron, seems to be common in Chlorophyta;while Rhodophyta and Heterokontophyta show higher affinity to manganese. The red agarophyte Alsidium triquetrum was used to analyze the relationship between metal concentration, environmental conditions and growth rate. Specimens grown in situ showed a large variability of Fe, Mn, Mg, and Al, in thallus tissue concentrations. Further, a compelling relationship between the growth rate and the thallus concentration of Mg and Mn, Zn, and Al was detecte. Manganese, unlike the other trace elements analyzed showed a positive linear relationship between growth rate and tissue content during the period of greatest vegetative growth.
文摘The present work assesses the temporal distribution pattern and geochemical changes of rare earth elements and Yttrium, Scandium, Thorium, and Uranium delivery into the Oualidia lagoon. Two sediment cores were retrieved from the Oualidia lagoon and analyzed using neutron activation analysis. The results indicated that heavy rare earth elements are slightly enriched the sediment cores over light rare earth elements. The highest values of REEs were recorded in the top layers of the cores and depleted with depth, suggesting a possible change in factors controlling their accumulation, including mechanical, chemical, and environmental parameters such as weathering intensity, grain size, and Fe-Mn oxides. The sediments display positive Ce anomalies, which are probably related to the submarine weathering process and detrital input. Noting also the variation of hydrodynamics conditions and confinement of the upstream part of the lagoon played a key role in changing the sediment origins.Thus, further investigation of REEs origin in the Oualidia lagoon sediment is required to identify their sources,provenances, and the factors controlling their spatial and vertical distributions. However, these results provide baseline data of occurring changes in REEs geochemical composition and constitute a typical study case to understand the link between sedimentary and geochemistry processes in a lagoonal ecosystem.
基金Project partly supported by the Japan International Science and Technology Exchange Center.
文摘Adsorption and desorption of exogenous rare earth elements (REE) in soils were studied.Results showed that soils had strong adsorbability for REE and the rate of adsorption of REE was over 95% of the added REE in these tests.The characteristics of adsorption isotherms corresponded well with the both Freundlich and Temkin equations,but deviated from the Langmuir equation.The adsorption of REE tended to increase with the rising of soil pH.A sequential extraction method used for studing the desorption and distribution of REE sorbed in soils are also discussed.
文摘The effect of four kinds of rare earth elements on the depositing rate of Ni-based alloy brush plating coatings was investigated. The results indicate that all of the selected rare earth elements increase the depositing rate of Ni-based alloy coatings, and Sm increases the depositing rate most obviously. There is an optimum amount of rare earth addition in the plating solution. With the change of plating voltage to a certain extent, the results reveal no differences. The mechanism of the increase of the depositing rate was analyzed.
基金Supported by Key Project of Guangxi Academy of Agricultural Sciences(GNK2013YZ07)~~
文摘[Objective] This study aimed to investigate the residues of rare earth ele-ments in Guangxi banana from banana-producing area with application of rare earth fertilizers and evaluate the safety of using rare earth fertilizers in banana production. [Method] HNO3+H2O2 mixed acid system with high pressure airtight microwave di-gestion sample pretreatment method and ICP-MS technology were used, to establish a determination method of 16 rare earth elements in banana samples, including Sc45, Y89, La139, Ce140, Pr141, Sm147, Eu153, Gb157, Tb159, Nd144, Dy163, Ho165, Er166, Tm169, Yb172 and Lu175. [Result] Different standard curves present-ed good linearity. Detection limit of the instrument was 0.002-0.01 μg/L; detection limit of the method was 0.1-0.6 μg/kg; recovery rate of standard addition was 94.5%-116%; relative standard deviation was 2.02%-14.21%. [Conclusion] This method has many advantages, such as simple mass spectrogram, high sensitivity and high selectivity, accurate quantification, high precision and accuracy, simple operation, high reproducibility and high recovery rate, which is suitable for the detection of rare earth elements in banana and other fruits, with certain theoretical and applicable val-ue for guiding banana production and high-efficient planting.
文摘With the introduction of Poisson's ratio in the expression of Young's modulus,nearly all the theoretical values of the various elastic moduli for the alkaline earth metals and rare earth elements can be greatly refined, with the single exception of the theoreticalvalue of Young's modulus for Pr which is slightly increased This points to the validityof the new theory, that the bulk modulus is independent of the Poisson's ratio, and further that the valency electron structures of solids as determined by Yu's theory are correct.
基金supported by the National Natural Science Foundation of China(No.51874084)the Fundamental Research Funds for the Central Universities(No.2125026)。
文摘The hot deformation behavior of Mn18Cr18N and Mn18Cr18N+Ce high nitrogen austenitic stainless steels at 1173-1473 K and 0.01-1 s^(-1) were investigated by thermal compression tests.The influence mechanism of Ce on the hot deformation behavior was analyzed by Ce-containing inclusions and segregation of Ce.The results show that after the addition of Ce,large,angular,hard,and brittle inclusions(TiN-Al_(2)O_(3),TiN,and Al_(2)O_(3)) can be modified to fine and dispersed Ce-containing inclusions(Ce-Al-O-S and TiN-Ce-Al-O-S).During the solidification,Ce-containing inclusions can be used as heterogeneous nucleation particles to refine as-cast grains.During the hot deformation,Ce-containing inclusions can pin dislocation movement and grain boundary migration,induce dynamic recrystallization(DRX)nucleation,and avoid the formation and propagation of micro cracks and gaps.In addition,during the solidification,Ce atoms enrich at the front of solid-li-quid interface,resulting in composition supercooling and refining the secondary dendrites.Similarly,during the hot deformation,Ce atoms tend to segregate at the boundaries of DRX grains,inhibiting the growth of grains.Under the synergistic effect of Ce-containing inclusions and Ce segregation,although the hot deformation resistance and hot deformation activation energy are improved,DRX is more likely to occur and the size of DRX grains is significantly refined,and the problem of hot deformation cracking can be alleviated.Finally,the microhardness of the samples was measured.The results show that compared with as-cast samples,the microhardness of hot-deformed samples increases signific-antly,and with the increase of DRX degree,the microhardness decreases continuously.In addition,Ce can affect the microhardness of Mn18Cr18N steel by affecting as-cast and hot deformation microstructures.
基金supported by Project of Basic Science Center of National Natural Science Foundation of China(72088101)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA14010101)+3 种基金National Key Research and Development Program of China(2017YFC0603101)National Natural Science Foundation of China(41872125,42002158)Scientific and Technological Project of RIPED(2021ycq01)the subject development project of RIPED(yjkt2019-3).
文摘Petrogenesis of lacustrine dolostone is closely related with paleo-lake water conditions.Here we report the high spatial-resolution petrographic and geochemical results of a lacustrine dolomite nodule from the Qingshankou Formation,the Songliao Basin.Sedimentary and elemental signatures confirm the protogenetic origin of this nodule and its effectiveness in recording geochemical characteristics of paleo-lake water during dolomitization.The low Y/Ho ratios,middle rare earth element(MREE)enrichment and subtle positive Eu anomalies within the nodule indicate a fresh water source.However,the Sr isotope values in the core of the nodule(0.7076-0.7080)are close to contemporaneous seawater(0.7074),yet different from the modern river(0.7120)and the host black shale(0.7100).On the premise of excluding the influence of hydrothermal fluids,the significantly low strontium isotope values of the lacustrine dolomite might be caused by seawater interference during dolomitization.Our findings demonstrate that lacustrine dolomite within black shales is not only a faithful tracer of diagenetic water environment,but also a novel and easily identified mineralogical evidence for episodic seawater intrusion event(91 Ma)in the Songliao Basin,which supplements other paleontological and geochemical evidence.
基金supports from National Natural Science Foundation of China (NSFC Grant No.52008373)Natural Science Foundation of Zhejiang Province of China (No.Q22E080445)are greatly acknowledged.
文摘Load transformation from the yielding part of the soil to the adjacent part is known as the soil arching effect,which plays an important role in the design of various geotechnical infrastructures.Terzaghi’s trapdoor test was an importantmilestone in the development of theories on soil arching.The research on earth pressure of the trapdoor problem is presented in this paper using the three-dimensional(3D)discrete element method(DEM).Five 3D trapdoor models with different heights are established by 3DDEMsoftware PFC 3D.The variation of earth pressure on the trapdoor with the downward movement of the trapdoor,the distribution of vertical earth pressure along the horizontal direction,the distribution of vertical earth pressure along the vertical direction,the distribution of lateral earth pressure coefficient along the depth direction,the magnitude and direction of contact force chain are studied,respectively.Related research results show that the earth pressure on the trapdoor decreases rapidly after the downward movement of the trapdoor,and then reaches the minimum earth pressure.After that,the earth’s pressure will rise slightly,and whether this phenomenon occurs depends on the depth ratio.For the bottom soil,due to the stress transfer caused by the soil arching effect,the ratio of earth pressure in the loose area decreases,while the ratio of earth pressure in the stable area increases.With the trapdoor moving down,the vertical earth pressure along the depth in the stable zone is basically consistent with the initial state,which shows an approximate linear distribution.After the trapdoor moves down,the distribution of earth pressure along with the depth in the loose area changes,which is far less than the theoretical value of vertical earth pressure of its self-weight.Because of the compression of the soil on both sides,the lateral earth pressure coefficient of most areas on the central axis of the loose zone is close to the passive earth pressure coefficient Kp.The existence of a‘soil arch’can be observed intuitively from the distribution diagram of the contact force chain in the loose zone.
基金supported by the National Basic Research Program of China(grant no.2007CB411402)
文摘Trace elements and rare earth elements(REE) of the sulfide minerals were determined by inductively-coupled plasma mass spectrometry.The results indicate that V,Cu,Sn,Ga,Cd,In,and Se are concentrated in sphalerite,Sb,As,Ge,and Tl are concentrated in galena,and almost all trace elements in pyrite are low.The Ga and Cd contents in the light-yellow sphalerites are higher than that in the brown and the black sphalerites.The contents of Ge,Tl,In,and Se in brown sphalerites are higher than that in light-yellow sphalerites and black sphalerites.It shows that REE concentrations are higher in pyrite than in sphalerite,and galena.In sphalerites,the REE concentration decreases from light-yellow sphalerites,brown sphalerites,to black sphalerites.The ratios of Ga/In are more than 10, and Co/Ni are less than 1 in the studied sphalerites and pyrites,respectively,indicating that the genesis of the Tianqiao Pb-Zn ore deposit might belong to sedimentary-reformed genesis associated with hydrothermal genesis.The relationship between LnGa and LnIn in sphalerite,and between LnBi and LnSb in galena,indicates that the Tianqiao Pb-Zn ore deposit might belong to sedimentary-reformed genesis.Based on the chondrite-normalized REE patterns,δEu is a negative anomaly(0.13-0.88),andδCe does not show obvious anomaly(0.88-1.31);all the samples have low total REE concentrations(〈3 ppm) and a wide range of light rare earth element/high rare earth element ratios(1.12-12.35).These results indicate that the ore-forming fluids occur under a reducing environment.Comparison REE compositions and parameters of sphalerites,galenas,pyrites,ores,altered dolostone rocks,strata carbonates,and the pyrite from Lower Carboniferous Datang Formation showed that the ore-forming fluids might come from polycomponent systems,that is,different chronostratigraphic units could make an important contribution to the ore-forming fluids.Combined with the tectonic setting and previous isotopic geochemistry evidence,we conclude that the ore-deposit genesis is hydrothermal,sedimentary reformed,with multisources characteristics of ore-forming fluids.
基金supported by the China geological survey project"Qaidam Basin Oil and Gas Resources Evaluation"(Nr:([2013]4-(3),001-008)National Natural Science Foundation of China(No.41330317)
文摘Total of 23 bench samples were taken from the No. 7 Coal of Iqe Coalfield, Qinghai Province, China, following Chinese Standard Method GB/T 482-2008 (2008). These samples were analyzed by powder X-ray diffraction (XRD), inductively coupled plasma mass spectrometry (ICP- MS) and X-ray fluorescence (XRF). The results indicate that the No. 7 Coal belongs to a low rank (Ro.ran =0.659%) and high-ash coal (40.54%). Compared to common Chinese and world low-rank coals, the lqe coal contains anomalous concentrations of rare metal elements, rare-scattered (dispersed) elements and rare earth elements. The highest contents of Rb, Cs, Ga and REY reach to 180, 26, 37, and 397 ppm, respectively. Their average contents of these elements are 10.9, 15, 4.8 and 3.5 times higher than those of world coals, respectively. Minerals in the coal include kaolinite, quartz, muscovite, siderite, and traces of rutile, and brookite. Kaolinite could be main host minerals of Rb, Cs, Ga and REY. The anomalous rare element Rb and Cs accumulation in the Iqe coal is related to both organic and inorganic matter. The REY concentrations may be related to circulation of thermal solutions, contained or sorbed by clayey particles, and organic matter as well.
基金the Major State Basic Research Development Program of China (2006CB403202)the Doctoral Discipline Foundation of Guizhou University
文摘A new type of rare earth elements (REEs) deposit was discovered from the gaolinite mudstone in the weathering crust of Permian basalt, Bijie region, western Guizhou, China. It contained ∑RE2O3 0.065%-1.086%. This type of REEs deposit was widely distributed with steady horizon and thickness of 3-4 m. The ore-bearing weathering crust (kaolinite) of the three discovered REEs deposits belonged to the third episode of the Emeishan basalt eruption. The new type of REEs deposit was suggested that basalt (tuff) weathering could lead to the enrichment of the rare earth elements. Therefore, it is of important economic significance to explore REEs deposits in the weathering crust of basalt (tuffs) in Yunnan, Guizhou, and Sichuan Provinces.
基金the support of the NERC SoS:RARE consortium grant(NE/ M011267/1)the support of a postgraduate fellowship from the College of Engineering,Mathematics and Physical Sciences at the University of Exeter
文摘The rare earth elements are unusual when defining giant-sized ore deposits,as resources are often quoted as total rare earth oxide,but the importance of a deposit may be related to the grade for individual,or a limited group of the elements.Taking the total REE resource,only one currently known deposit(Bayan Obo) would class as giant(〉1.7×10^7 tonnes contained metal),but a range of others classify as large(〉1.7×10^6 tonnes).With the exception of unclassified resource estimates from the Olympic Dam 10 CG deposit,all of these deposits are related to alkaline igneous activity- either carbonatites or agpaitic nepheline syenites.The total resource in these deposits must relate to the scale of the primary igneous source,but the grade is a complex function of igneous source,magmatic crystallisation,hydrothermal modification and supergene enrichment during weathering.Isotopic data suggest that the sources conducive to the formation of large REE deposits are developed in subcontinental lithospheric mantle,enriched in trace elements either by plume activity,or by previous subduction.The reactivation of such enriched mantle domains in relatively restricted geographical areas may have played a role in the formation of some of the largest deposits(e.g.Bayan Obo).Hydrothermal activity involving fluids from magmatic to meteoric sources may result in the redistribution of the REE and increases in grade,depending on primary mineralogy and the availability of ligands.Weathering and supergene enrichment of carbonatite has played a role in the formation of the highest grade deposits at Mount Weld(Australia) and Tomtor(Russia).For the individual REE with the current highest economic value(Nd and the HREE),the boundaries for the large and giant size classes are two orders of magnitude lower,and deposits enriched in these metals(agpaitic systems,ion absorption deposits) may have significant economic impact in the near future.
文摘Objective The aim of this survey was to investigate the level of contamination of the most consumed foods in China with 26 rare earth elements (REEs), and to provide the basic data for establishing and revising food safety standards for REEs. Methods Sixteen REEs in foods were measured by inductively coupled plasma-mass spectrometry (ICP-MS) in the labs of the Centers for Disease Control and Prevention of four provinces and two municipalities, during 2009-2020. Results 2 231 samples were analyzed and 29 221 concentration data of 16 REEs were collected. The REEs levels in the investigated foods varied significantly. The concentrations of cerium (Ce), dysprosium (Dy), yttrium (Y), lanthanum (La), and neodymium (Nd) were relatively high, while the remaining eleven REEs were at low levels. The mean values of total rare earth element oxides (REOs) in cereals, fresh vegetables, fresh aquatic products, fresh meats and eggs varied from 0.052 mg/kg to 0.337 mg/kg. Conclusion 16 REEs in the major foods were at very low contamination levels in the investigated regions.
基金Project supported by the National Natural Science Foundation of China (40571146)
文摘Studies were carried out on several aspects of rare earth elements (REEs), such as the theory and practice of their applications in agriculture, their geochemical behaviors in natural and agricultural ecosystems, the mechanisms for the increase of crop yield using REE fertilizer, and their toxicology. However, limited knowledge was available for the transfer processes and the features and mechanisms of distribution and fractionations of REEs inside plants. The characteristics of REE fractionations in plants can be used to "trace" the pathway of REE transportation from soils (solution) to plants. A better understanding of the mechanisms of REE fractionations was helpful to investigate the controlling factors, including both the internal and the external ones. The characteristics and mechanisms of REE fractionations in plants and their significance were reviewed. Furthermore, the prospect for these fields was discussed, in hope of providing a new way in studying the bioavailability of REEs and heavy metals.
文摘Influences of rare earth (RE) elements addition on thermal fatigue behaviors of AZ91 alloy were studied. Repeated heating and cooling cycles were applied on the samples at 170 and 210℃ to develop thermal fatigue cracks. Crack growth mechanisms and microstructural influences were investigated by optical and scanning electron microscopy (SEM) as well as energy dispersive X-ray spectroscopy (EDS). Thermal fatigue behaviors were observed to improve successively by addition of the RE up to 2wt.%. This improvement was attributed to the consummation of aluminum in melt by precipitation of the needle shaped AII1RE3 phases. This process was attributed to the reduction of MglTAl12 phase volume fraction and consequent decrease of the brittle Mg/MglTAl12 interface which was the main reason for weak thermal properties of the alloy at rather high temperatures. Further additions of RE, however, reduced the thermal shock resistance of the samples by increasing the mean length of the brittle needle shaped phases.