To support the explosive growth of Information and Communications Technology(ICT),Mobile Edge Comput-ing(MEC)provides users with low latency and high bandwidth service by offloading computational tasks to the network...To support the explosive growth of Information and Communications Technology(ICT),Mobile Edge Comput-ing(MEC)provides users with low latency and high bandwidth service by offloading computational tasks to the network’s edge.However,resource-constrained mobile devices still suffer from a capacity mismatch when faced with latency-sensitive and compute-intensive emerging applications.To address the difficulty of running computationally intensive applications on resource-constrained clients,a model of the computation offloading problem in a network consisting of multiple mobile users and edge cloud servers is studied in this paper.Then a user benefit function EoU(Experience of Users)is proposed jointly considering energy consumption and time delay.The EoU maximization problem is decomposed into two steps,i.e.,resource allocation and offloading decision.The offloading decision is usually given by heuristic algorithms which are often faced with the challenge of slow convergence and poor stability.Thus,a combined offloading algorithm,i.e.,a Gini coefficient-based adaptive genetic algorithm(GCAGA),is proposed to alleviate the dilemma.The proposed algorithm optimizes the offloading decision by maximizing EoU and accelerates the convergence with the Gini coefficient.The simulation compares the proposed algorithm with the genetic algorithm(GA)and adaptive genetic algorithm(AGA).Experiment results show that the Gini coefficient and the adaptive heuristic operators can accelerate the convergence speed,and the proposed algorithm performs better in terms of convergence while obtaining higher EoU.The simulation code of the proposed algorithm is available:https://github.com/Grox888/Mobile_Edge_Computing/tree/GCAGA.展开更多
The biogeochemical processes of marine sediments are influenced by bioturbation and organic carbon decomposition,which is crucial for understanding global element cycles and climate change.Two sediment cores were acqu...The biogeochemical processes of marine sediments are influenced by bioturbation and organic carbon decomposition,which is crucial for understanding global element cycles and climate change.Two sediment cores were acquired in 2017 from abyssal basins in the central-eastern tropical Pacific to determine the bioturbation and organic carbon degradation processes.The radioactivity concentrations of 210Pb and 226Ra in the sediment cores were measured,indicating the presence of significant excess 210Pb(210Pbex)signals in the sediment cores.Besides,a manganese nodule was discovered in one core,which had a substantial influence on the distribution of 210Pbex.With the exception of this anomalous finding,the bioturbation coefficients in the remaining core were estimated to be 10.6 cm^(2)/a using a steady-state diffusion model,greater than most of the deep-sea sediments from the equatorial eastern Pacific.By using a bio-diffusion model,we further calculated the degradation rates of organic carbon(8.02 ka-1),which is also higher than other areas of the Pacific.Our findings displayed the presence of a biologically active benthic ecosystem in the central-eastern tropical Pacific.展开更多
Currently,the operational performance assessment system in the power market primarily focuses on power generation and electricity retail companies,lacking a system tailored to the operational characteristics of power ...Currently,the operational performance assessment system in the power market primarily focuses on power generation and electricity retail companies,lacking a system tailored to the operational characteristics of power generation/selling integrated companies.Therefore,this article proposes an assessment index system for assessing the operational performance of a power generation/selling integrated company,encompassing three dimensions:basic capacity,development potential,and external environment.A dynamic proportional adjustment coefficient is designed,along with a subjective and objective weighting model for assessment indexes based on a combined weightingmethod.Subsequently,the operational performance of an integrated company is assessed using extension theory.The results in the case study demonstrate the feasibility and effectiveness of the proposed dynamic proportional adjustment coefficient.展开更多
This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydra...This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydration simulation,thermodynamic calculation,and finite element analysis to examine the effects of pore solution,including effect of electrochemical potential,effect of chemical activity,and effect of mechanical interactions between ions,on the chloride effective diffusion coefficient of hydrated C3S paste.The results indicate that the effect of electrochemical potential on chloride diffusion becomes stronger with increasing hydration age due to the increase in the content of hydrated calcium silicate;as the hydration age increases,the effect of chemical activity on chloride diffusion weakens when the number of diffusible elements decreases;the effect of mechanical interactions between ions on chloride diffusion decreases with the increase of hydration age.展开更多
Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the...Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the Zener factor,the diameter and number density of precipitates of interrupted testing samples were statistically calculated.The effect of precipitate ripening on the Goss texture and magnetic property was investigated.Data indicated that the trend of Zener factor was similar under different heating rates,first increasing and then decreasing,and that the precipitate maturing was greatly inhibited as the heating rate increased.Secondary recrystallization was developed at the temperature of 1010℃when a heating rate of 5℃/h was used,resulting in Goss,Brass and{110}<227>oriented grains growing abnormally and a magnetic induction intensity of 1.90T.Furthermore,increasing the heating rate to 20℃/h would inhibit the development of undesirable oriented grains and obtain a sharp Goss texture.However,when the heating rate was extremely fast,such as 40℃/h,poor secondary recrystallization was developed with many island grains,corresponding to a decrease in magnetic induction intensity to 1.87 T.At a suitable heating rate of 20℃/h,the sharpest Goss texture and the highest magnetic induction of 1.94 T with an onset secondary recrystallization temperature of 1020℃were found among the experimental variables in this study.The heating rate affected the initial temperature of secondary recrystallization by controlling the maturation of precipitates,leading to the deviation and dispersion of Goss texture,thereby reducing the magnetic properties.展开更多
The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This...The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This is a pioneering attempt of exerting RPMD method to multichannel reactions.With the help of a newly developed optimization-interpolation protocol for preparing the initial structures and adaptive protocol for choosing the force constants,we have successfully obtained the thermal rate coefficients.The results are consistent with those from other theoretical methods,such as variational transition state theory and quantum dynamics.Especially,RPMD results exhibit negative temperature dependence,which is similar to the results from variational transition state theory but different from the ones from ground state quantum dynamics calculations.展开更多
The reflection coefficient and the total horizontal forces of regular waves acting on theperforated caisson are experimentally investigated. The empirical relationship between reflection coefficient and the ratio of t...The reflection coefficient and the total horizontal forces of regular waves acting on theperforated caisson are experimentally investigated. The empirical relationship between reflection coefficient and the ratio of the total horizontal forces acting on the perforated caisson to those on solid vertical walls with the relative chamber width, relative water depth and porosity of perforated wall, etc. are given. Moreover, the results of the ratio of the total horizontal forces are also compared with formulas given by Chinese Harbour Design Criteria and Takahashi, which may be useful for the practical engineering application.展开更多
Simulations of two-dimensional(2D) flow past a circular cylinder with the smoothed particle hydrodynamics(SPH) method were conducted in order to accurately determine the drag coefficient. The fluid was modeled as a vi...Simulations of two-dimensional(2D) flow past a circular cylinder with the smoothed particle hydrodynamics(SPH) method were conducted in order to accurately determine the drag coefficient. The fluid was modeled as a viscous liquid with weak compressibility. Boundary conditions,such as a no-slip solid wall, inflow and outflow, and periodic boundaries, were employed to resemble the physical problem. A sensitivity analysis, which has been rarely addressed in previous studies, was conducted on several SPH parameters. Hence, the effects of distinct parameters, such as the kernel choices and the domain dimensions, were investigated with the goal of obtaining highly accurate results. A range of Reynolds numbers(1-500) was simulated, and the results were compared with existing experimental data. It was observed that the domain dimensions and the resolution of SPH particles, in comparison to the obstacle size, affected the obtained drag coefficient significantly. Other parameters, such as the background pressure, influenced the transient condition, but did not influence the steady state at which the drag coefficient was determined.展开更多
The elevated supersaturation of total dissolved gas (TDG) downstream of a high-dam spill has deleterious effects on fish in a large range. A one-dimensional (l-D) longitudinal model is optimal for the prediction o...The elevated supersaturation of total dissolved gas (TDG) downstream of a high-dam spill has deleterious effects on fish in a large range. A one-dimensional (l-D) longitudinal model is optimal for the prediction of supersaturated TDG dissipation over a long distance. The key issue of the model is to determine the dissipation coefficient accurately. In agreement with field observations and experiment data, dimensional analysis and regression were performed to propose a formula for estimating the dissipation coefficient of supersaturated TDG in various rivers and reservoirs, and it involves the effects of the turbulence intensity, the hydro-pressure and the solid-liquid interface. The friction velocity, water depth, hydraulic radius and Froude number are independent variables in the formula which are easy to determine in practical applications. The 1-D longitudinal model is implemented to calculate the dissipation of TDG in a reach of the Jinsha River. Good agreement is found between the calculated results and field data for both the dissipation coefficient and the dissipation process.展开更多
To optimize the temperature coefficient of reactivity(TCR)for a graphite-moderated and liquid-fueled molten salt reactor,the effects of fuel salt composition on the fuel salt temperature coefficient of reactivity(FSTC...To optimize the temperature coefficient of reactivity(TCR)for a graphite-moderated and liquid-fueled molten salt reactor,the effects of fuel salt composition on the fuel salt temperature coefficient of reactivity(FSTC)were investigated in our earlier work.In this study,we aim to provide a more comprehensive analysis of the TCR by considering the effects of the graphite-moderator temperature coefficient of reactivity(MTC).The effects of^235U enrichment and heavy metal(HM)proportion in the salt mixture on the MTC are investigated from the perspective of the six-factor formula based on a full-core model.For the MTC(labeled“αTM”),the temperature coefficient of the fast fission factors(αTM(ε))is positive,while those of the resonance escape probability(αTM(p)),the thermal reproduction factor(αTM(η)),the thermal utilization factor(αTM(f)),and the total non-leakage probability(αTM(A))are negative.The results reveal that the magnitudes ofαTM(ε)andαTM(p)for the MTC are similar.Thus,variations in the MTC with^235U enrichment for different HM proportions are mainly dependent onαTM(η),αTM(A),andαTM(f),but especially on the former two.To obtain a more negative MTC,a lower HM proportion and/or a lower 235U enrichment is recommended.Together with our previous studies on the FSTC,a relatively soft neutron spectrum could strengthen the TCR with a sufficiently negative MTC.展开更多
The hollow-pipe perforated breakwater is of low reflection. In this paper the functions of reflection coefficients of both regular and random waves are theoretically derived, based on the concept of linear superimposi...The hollow-pipe perforated breakwater is of low reflection. In this paper the functions of reflection coefficients of both regular and random waves are theoretically derived, based on the concept of linear superimposition of reflected and incident waves and with the total flow rate continuity of integral form instead of the non-continuity of the boundary condition, and based on the concept of linear wave spectrum theory. Comparisons between theoretical results presented here and measurements of model tests show reasonable agreement.展开更多
This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) prop...This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.展开更多
In this short review some aspects of applications of free electron theory on the ground of the Fermi statistics will be analyzed. There it is an intention to attempt somebody’s attention to problems in widespread lit...In this short review some aspects of applications of free electron theory on the ground of the Fermi statistics will be analyzed. There it is an intention to attempt somebody’s attention to problems in widespread literature of interpretation of conductivity of metals, superconductor in the normal state and semiconductors with degenerated electron gas. In literature there are many cases when to these materials the classical statistics is applied. It is well known that the electron heat capacity and thermal noise (and as a consequence the electrical conductivity) are determined by randomly moving electrons, which energy is close to the Fermi energy level, and the other part of electrons, which energy is well below the Fermi level can not be scattered and change its energy. Therefore there was tried as simple as possible on the ground of Fermi distribution, and on random motion of charge carriers, and on the well known experimental results to take general expressions for various kinetic parameters which are applicable for materials both without and with degenerated electron gas. It is shown, that drift mobility of randomly moving charge carriers, depending on the degree degeneracy, can considerably exceed the Hall mobility. Also it is shown that the Einstein relation between the diffusion coefficient and the drift mobility of charge carriers is valid even in the case of degeneracy. There also will be presented the main kinetic parameter values for different metals.展开更多
Interdiffusion coefficients at 950℃ and 1050℃ are calculated by Wagner analysis method as a function of composition of β-NiAI phase. The β-NiAI phase is formed by pack cementation on surface of superalloy. Results...Interdiffusion coefficients at 950℃ and 1050℃ are calculated by Wagner analysis method as a function of composition of β-NiAI phase. The β-NiAI phase is formed by pack cementation on surface of superalloy. Results of the calculation show that interdiffusion coefficients in β-NiAI phase strongly depend on the compositions and vary over several orders of magnitude. Compared with the interdiffusion coefficients in the stoichiometric β-NiAI phase, the interdiffusion coefficients in β-NiAI phase formed on superalloy is obviously small, probably due to the composition, complicated microstructure and precipitates. However, it could be seen clearly that the shapes of the diffusivity curves are very similar to each other. The similarity of the diffusion curves and the difference between interdiffusion coefficients imply that the compositions, microstructures and precipitates of superalloy have a distinctly adverse effect on the interdiffusion of Ni and Al atoms during aluminization, but do not change the essential characteristics of β-NiAI phase.展开更多
The ab initio calculations of electron-impact resonant excitation rate coefficients from the ground level to 54 fine-structure levels of 3d94l (1 = s, p, d, f) configurations of Ni-like tantalum ion are performed by...The ab initio calculations of electron-impact resonant excitation rate coefficients from the ground level to 54 fine-structure levels of 3d94l (1 = s, p, d, f) configurations of Ni-like tantalum ion are performed by using a fully relativistic distorted-wave approximation. The configuration-interaction effects are taken into account. The decays to autoionizing levels possibly followed by autoionization cascades are also included in the calculation. The contributions from doubly-excited intermediate states of Cu-like 31^17n′l′n′l″ (n′ = 4, 5; n″ = 5 - 15) are calculated explicitly, and the contributions from high Rydberg states (n″〉 15) are taken into account by using n-3 scaling law. The present results should be more accurate than the existent calculations.展开更多
This paper calculates the electron impact excitation rate coefficients from the ground term 2s^22p^2 3p to the excited terms of the 2s^22p^2, 2s^2p^3, 2s^22p3s, 2s^22p3p, and 2s^22p3d configurations of N II. In the ca...This paper calculates the electron impact excitation rate coefficients from the ground term 2s^22p^2 3p to the excited terms of the 2s^22p^2, 2s^2p^3, 2s^22p3s, 2s^22p3p, and 2s^22p3d configurations of N II. In the calculations, multiconfiguration Dirac-Fork wave functions have been applied to describe the target-ion states and relativistic distorted-wave calculation has been performed to generate fine-structure collision strengths. The collision strengths are then averaged over a Maxwellian distribution of electron velocities in order to generate the effective collision strengths. The calculated rate coefficients are compared with available experimental and theoretical data, and some good agreements are found for the outer shell electron excitations. But for the inner shell electron excitations there are still some differences between the present calculations and available experiments.展开更多
The prototype tetra-atomic reaction F+H2O→HF+OH plays a significant role in both atmospheric and astronomical chemistry.In this work,thermal rate coefficients of this reaction are determined with the ring polymer mol...The prototype tetra-atomic reaction F+H2O→HF+OH plays a significant role in both atmospheric and astronomical chemistry.In this work,thermal rate coefficients of this reaction are determined with the ring polymer molecular dynamics(RPMD)method on a full-dimensional potential energy surface(PES).This PES is the most accurate one for the title reaction,as demonstrated by the correct barrier height and reaction energy,compared to the benchmark calculations by the focal point analysis and the high accuracy extrapolated ab initio thermochemistry methods.The RPMD rate coefficients are in excellent agreement with those calculated by the semiclassical transition state theory and a two-dimensional master equation technique,and some experimental measurements.As has been found in many RPMD applications,quantum effects,including tunneling and zero-point energy effects,can be efficiently and effectively captured by the RPMD method.In addition,the convergence of the results with respect to the number of beads is rapid,which is also consistent with previous RPMD applications.展开更多
A method based upon the weighted total cross section (WTCS) theory is proposed to calculate the photo-ionisation cross sections and the radiative recombination rate coefficients between the fundamental level of CO a...A method based upon the weighted total cross section (WTCS) theory is proposed to calculate the photo-ionisation cross sections and the radiative recombination rate coefficients between the fundamental level of CO and the main electronic states of its corresponding ion. Total photo-ionisation cross sections and radiative recombination rate coefficients are determined from the calculation of elementary vibrational photo-ionisation cross sections. Transitions be- tween CO+(X, A and B) and CO(X) are considered. Total photo-ionisation cross sections and recombination coefficients are computed in the temperature interval 500-15000 K.展开更多
Fusion power output is proportional not only to the fuel particle number densities participating in reaction but also to the fusion reaction rate coefficient (or reactivity), which is dependent on reactant velocity ...Fusion power output is proportional not only to the fuel particle number densities participating in reaction but also to the fusion reaction rate coefficient (or reactivity), which is dependent on reactant velocity distribution functions. They are usuMly assumed to be dual Maxwellian distribution functions with the same temperature for thermal nuclear fusion circumstances. However, if high power neutral beam injection and minority ion species ICRF plasma heating, or multi-pinched plasma beam head-on collision, in a converging region are required and investigated in future large scale fusion reactors, then the fractions of the injected energetic fast ion tail resulting from ionization or charge exchange will be large enough and their contribution to the non-Maxwellian distribution functions is not negligible, hence to the fusion reaction rate coefficient or calculation of fusion power. In such cases, beam-target, and beam-beam reaction enhancement effect contributions should play very important roles. In this paper, several useful formulae to calculate the fusion reaction rate coefticient for different beam and target combination scenarios are derived in detail展开更多
A set of experiments is carried out in a towing tank to study the effects of the curvature of perforated plates on the wave reflection coefficient (Cr). The curvature of a perforated plate can be changed by rotating...A set of experiments is carried out in a towing tank to study the effects of the curvature of perforated plates on the wave reflection coefficient (Cr). The curvature of a perforated plate can be changed by rotating a reference perforated plate about its origin point according to the parabolic equation y=-x2 A plunger-type wave maker is used to generate regular waves. The reflection coefficients are calculated using Goda and Suzuki’s (1976) method. The results are compared with those of vertical or sloped passive wave absorbers. The comparison shows that a perforated plate with a curved profile is highly efficient in terms of reducing the wave reflection coefficient. A correlation is established to estimate the reflection coefficient of curved perforated plates as a function of both flow and geometry characteristics.展开更多
文摘To support the explosive growth of Information and Communications Technology(ICT),Mobile Edge Comput-ing(MEC)provides users with low latency and high bandwidth service by offloading computational tasks to the network’s edge.However,resource-constrained mobile devices still suffer from a capacity mismatch when faced with latency-sensitive and compute-intensive emerging applications.To address the difficulty of running computationally intensive applications on resource-constrained clients,a model of the computation offloading problem in a network consisting of multiple mobile users and edge cloud servers is studied in this paper.Then a user benefit function EoU(Experience of Users)is proposed jointly considering energy consumption and time delay.The EoU maximization problem is decomposed into two steps,i.e.,resource allocation and offloading decision.The offloading decision is usually given by heuristic algorithms which are often faced with the challenge of slow convergence and poor stability.Thus,a combined offloading algorithm,i.e.,a Gini coefficient-based adaptive genetic algorithm(GCAGA),is proposed to alleviate the dilemma.The proposed algorithm optimizes the offloading decision by maximizing EoU and accelerates the convergence with the Gini coefficient.The simulation compares the proposed algorithm with the genetic algorithm(GA)and adaptive genetic algorithm(AGA).Experiment results show that the Gini coefficient and the adaptive heuristic operators can accelerate the convergence speed,and the proposed algorithm performs better in terms of convergence while obtaining higher EoU.The simulation code of the proposed algorithm is available:https://github.com/Grox888/Mobile_Edge_Computing/tree/GCAGA.
基金The Scientific Research Foundation of Third Institute of Oceanography,Ministry of Natural Resources under contract No.2020012the Natural Science Foundation of Xiamen,China under contract No.3502Z20227246the Guiding Project of the Science and Technology Plan of Fujian Province under contract No.2020Y0081.
文摘The biogeochemical processes of marine sediments are influenced by bioturbation and organic carbon decomposition,which is crucial for understanding global element cycles and climate change.Two sediment cores were acquired in 2017 from abyssal basins in the central-eastern tropical Pacific to determine the bioturbation and organic carbon degradation processes.The radioactivity concentrations of 210Pb and 226Ra in the sediment cores were measured,indicating the presence of significant excess 210Pb(210Pbex)signals in the sediment cores.Besides,a manganese nodule was discovered in one core,which had a substantial influence on the distribution of 210Pbex.With the exception of this anomalous finding,the bioturbation coefficients in the remaining core were estimated to be 10.6 cm^(2)/a using a steady-state diffusion model,greater than most of the deep-sea sediments from the equatorial eastern Pacific.By using a bio-diffusion model,we further calculated the degradation rates of organic carbon(8.02 ka-1),which is also higher than other areas of the Pacific.Our findings displayed the presence of a biologically active benthic ecosystem in the central-eastern tropical Pacific.
基金supported in part by the Science and Technology Innovation Program of Hunan Province under Grants 2023JJ40046 and 2023JJ30049.
文摘Currently,the operational performance assessment system in the power market primarily focuses on power generation and electricity retail companies,lacking a system tailored to the operational characteristics of power generation/selling integrated companies.Therefore,this article proposes an assessment index system for assessing the operational performance of a power generation/selling integrated company,encompassing three dimensions:basic capacity,development potential,and external environment.A dynamic proportional adjustment coefficient is designed,along with a subjective and objective weighting model for assessment indexes based on a combined weightingmethod.Subsequently,the operational performance of an integrated company is assessed using extension theory.The results in the case study demonstrate the feasibility and effectiveness of the proposed dynamic proportional adjustment coefficient.
基金Funded by the Natural Science Foundation of Jiangsu Province(No.BK20241529)China Postdoctoral Science Foundation(No.2024M750736)。
文摘This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydration simulation,thermodynamic calculation,and finite element analysis to examine the effects of pore solution,including effect of electrochemical potential,effect of chemical activity,and effect of mechanical interactions between ions,on the chloride effective diffusion coefficient of hydrated C3S paste.The results indicate that the effect of electrochemical potential on chloride diffusion becomes stronger with increasing hydration age due to the increase in the content of hydrated calcium silicate;as the hydration age increases,the effect of chemical activity on chloride diffusion weakens when the number of diffusible elements decreases;the effect of mechanical interactions between ions on chloride diffusion decreases with the increase of hydration age.
文摘Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the Zener factor,the diameter and number density of precipitates of interrupted testing samples were statistically calculated.The effect of precipitate ripening on the Goss texture and magnetic property was investigated.Data indicated that the trend of Zener factor was similar under different heating rates,first increasing and then decreasing,and that the precipitate maturing was greatly inhibited as the heating rate increased.Secondary recrystallization was developed at the temperature of 1010℃when a heating rate of 5℃/h was used,resulting in Goss,Brass and{110}<227>oriented grains growing abnormally and a magnetic induction intensity of 1.90T.Furthermore,increasing the heating rate to 20℃/h would inhibit the development of undesirable oriented grains and obtain a sharp Goss texture.However,when the heating rate was extremely fast,such as 40℃/h,poor secondary recrystallization was developed with many island grains,corresponding to a decrease in magnetic induction intensity to 1.87 T.At a suitable heating rate of 20℃/h,the sharpest Goss texture and the highest magnetic induction of 1.94 T with an onset secondary recrystallization temperature of 1020℃were found among the experimental variables in this study.The heating rate affected the initial temperature of secondary recrystallization by controlling the maturation of precipitates,leading to the deviation and dispersion of Goss texture,thereby reducing the magnetic properties.
基金supported by the National Natural Science Foundation of China(No.21503130 and No.11674212,and No.21603144)supported by the Young Eastern Scholar Program of the Shanghai Municipal Education Commission(QD2016021)+1 种基金the Shanghai Key Laboratory of High Temperature Superconductors(No.14DZ2260700)supported by Shanghai Sailing Program(No.2016YF1408400).
文摘The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This is a pioneering attempt of exerting RPMD method to multichannel reactions.With the help of a newly developed optimization-interpolation protocol for preparing the initial structures and adaptive protocol for choosing the force constants,we have successfully obtained the thermal rate coefficients.The results are consistent with those from other theoretical methods,such as variational transition state theory and quantum dynamics.Especially,RPMD results exhibit negative temperature dependence,which is similar to the results from variational transition state theory but different from the ones from ground state quantum dynamics calculations.
基金The present work was financially supported by the Joint Fund of the National Natural Science Foundation of China the Hong Kong Science Research Bureau under contract No.49910161985 the Research Fund for the Development of Harbor Engineering Desig
文摘The reflection coefficient and the total horizontal forces of regular waves acting on theperforated caisson are experimentally investigated. The empirical relationship between reflection coefficient and the ratio of the total horizontal forces acting on the perforated caisson to those on solid vertical walls with the relative chamber width, relative water depth and porosity of perforated wall, etc. are given. Moreover, the results of the ratio of the total horizontal forces are also compared with formulas given by Chinese Harbour Design Criteria and Takahashi, which may be useful for the practical engineering application.
基金supported by the Australian Research Council Discovery Project(Grant No.DP120102188)
文摘Simulations of two-dimensional(2D) flow past a circular cylinder with the smoothed particle hydrodynamics(SPH) method were conducted in order to accurately determine the drag coefficient. The fluid was modeled as a viscous liquid with weak compressibility. Boundary conditions,such as a no-slip solid wall, inflow and outflow, and periodic boundaries, were employed to resemble the physical problem. A sensitivity analysis, which has been rarely addressed in previous studies, was conducted on several SPH parameters. Hence, the effects of distinct parameters, such as the kernel choices and the domain dimensions, were investigated with the goal of obtaining highly accurate results. A range of Reynolds numbers(1-500) was simulated, and the results were compared with existing experimental data. It was observed that the domain dimensions and the resolution of SPH particles, in comparison to the obstacle size, affected the obtained drag coefficient significantly. Other parameters, such as the background pressure, influenced the transient condition, but did not influence the steady state at which the drag coefficient was determined.
基金Projects(51179111,51279115)supported by the National Natural Science Foundation of ChinaProject(20110181110073)supported by the Doctoral Programs Foundation of Ministry of Education of China
文摘The elevated supersaturation of total dissolved gas (TDG) downstream of a high-dam spill has deleterious effects on fish in a large range. A one-dimensional (l-D) longitudinal model is optimal for the prediction of supersaturated TDG dissipation over a long distance. The key issue of the model is to determine the dissipation coefficient accurately. In agreement with field observations and experiment data, dimensional analysis and regression were performed to propose a formula for estimating the dissipation coefficient of supersaturated TDG in various rivers and reservoirs, and it involves the effects of the turbulence intensity, the hydro-pressure and the solid-liquid interface. The friction velocity, water depth, hydraulic radius and Froude number are independent variables in the formula which are easy to determine in practical applications. The 1-D longitudinal model is implemented to calculate the dissipation of TDG in a reach of the Jinsha River. Good agreement is found between the calculated results and field data for both the dissipation coefficient and the dissipation process.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)the Frontier Science Key Program of the Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)
文摘To optimize the temperature coefficient of reactivity(TCR)for a graphite-moderated and liquid-fueled molten salt reactor,the effects of fuel salt composition on the fuel salt temperature coefficient of reactivity(FSTC)were investigated in our earlier work.In this study,we aim to provide a more comprehensive analysis of the TCR by considering the effects of the graphite-moderator temperature coefficient of reactivity(MTC).The effects of^235U enrichment and heavy metal(HM)proportion in the salt mixture on the MTC are investigated from the perspective of the six-factor formula based on a full-core model.For the MTC(labeled“αTM”),the temperature coefficient of the fast fission factors(αTM(ε))is positive,while those of the resonance escape probability(αTM(p)),the thermal reproduction factor(αTM(η)),the thermal utilization factor(αTM(f)),and the total non-leakage probability(αTM(A))are negative.The results reveal that the magnitudes ofαTM(ε)andαTM(p)for the MTC are similar.Thus,variations in the MTC with^235U enrichment for different HM proportions are mainly dependent onαTM(η),αTM(A),andαTM(f),but especially on the former two.To obtain a more negative MTC,a lower HM proportion and/or a lower 235U enrichment is recommended.Together with our previous studies on the FSTC,a relatively soft neutron spectrum could strengthen the TCR with a sufficiently negative MTC.
文摘The hollow-pipe perforated breakwater is of low reflection. In this paper the functions of reflection coefficients of both regular and random waves are theoretically derived, based on the concept of linear superimposition of reflected and incident waves and with the total flow rate continuity of integral form instead of the non-continuity of the boundary condition, and based on the concept of linear wave spectrum theory. Comparisons between theoretical results presented here and measurements of model tests show reasonable agreement.
基金supported by the National Natural Science Funds for Distinguished Young Scholar (70825004)National Natural Science Foundation of China (NSFC) (10731010 and 10628104)+3 种基金the National Basic Research Program (2007CB814902)Creative Research Groups of China (10721101)Leading Academic Discipline Program, the 10th five year plan of 211 Project for Shanghai University of Finance and Economics211 Project for Shanghai University of Financeand Economics (the 3rd phase)
文摘This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.
文摘In this short review some aspects of applications of free electron theory on the ground of the Fermi statistics will be analyzed. There it is an intention to attempt somebody’s attention to problems in widespread literature of interpretation of conductivity of metals, superconductor in the normal state and semiconductors with degenerated electron gas. In literature there are many cases when to these materials the classical statistics is applied. It is well known that the electron heat capacity and thermal noise (and as a consequence the electrical conductivity) are determined by randomly moving electrons, which energy is close to the Fermi energy level, and the other part of electrons, which energy is well below the Fermi level can not be scattered and change its energy. Therefore there was tried as simple as possible on the ground of Fermi distribution, and on random motion of charge carriers, and on the well known experimental results to take general expressions for various kinetic parameters which are applicable for materials both without and with degenerated electron gas. It is shown, that drift mobility of randomly moving charge carriers, depending on the degree degeneracy, can considerably exceed the Hall mobility. Also it is shown that the Einstein relation between the diffusion coefficient and the drift mobility of charge carriers is valid even in the case of degeneracy. There also will be presented the main kinetic parameter values for different metals.
文摘Interdiffusion coefficients at 950℃ and 1050℃ are calculated by Wagner analysis method as a function of composition of β-NiAI phase. The β-NiAI phase is formed by pack cementation on surface of superalloy. Results of the calculation show that interdiffusion coefficients in β-NiAI phase strongly depend on the compositions and vary over several orders of magnitude. Compared with the interdiffusion coefficients in the stoichiometric β-NiAI phase, the interdiffusion coefficients in β-NiAI phase formed on superalloy is obviously small, probably due to the composition, complicated microstructure and precipitates. However, it could be seen clearly that the shapes of the diffusivity curves are very similar to each other. The similarity of the diffusion curves and the difference between interdiffusion coefficients imply that the compositions, microstructures and precipitates of superalloy have a distinctly adverse effect on the interdiffusion of Ni and Al atoms during aluminization, but do not change the essential characteristics of β-NiAI phase.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10574029 and No 10434050, the Chinese Association of Atomic and Molecular Data and National High-Tech ICF Committee in China.
文摘The ab initio calculations of electron-impact resonant excitation rate coefficients from the ground level to 54 fine-structure levels of 3d94l (1 = s, p, d, f) configurations of Ni-like tantalum ion are performed by using a fully relativistic distorted-wave approximation. The configuration-interaction effects are taken into account. The decays to autoionizing levels possibly followed by autoionization cascades are also included in the calculation. The contributions from doubly-excited intermediate states of Cu-like 31^17n′l′n′l″ (n′ = 4, 5; n″ = 5 - 15) are calculated explicitly, and the contributions from high Rydberg states (n″〉 15) are taken into account by using n-3 scaling law. The present results should be more accurate than the existent calculations.
基金supported by the National Natural Science Foundation of China (Grant Nos.10774122 and 10876028)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20070736001)the Technology and Innovation Program of Northwest Normal University (Grant No.NWNU-KJCXGC-03-21)
文摘This paper calculates the electron impact excitation rate coefficients from the ground term 2s^22p^2 3p to the excited terms of the 2s^22p^2, 2s^2p^3, 2s^22p3s, 2s^22p3p, and 2s^22p3d configurations of N II. In the calculations, multiconfiguration Dirac-Fork wave functions have been applied to describe the target-ion states and relativistic distorted-wave calculation has been performed to generate fine-structure collision strengths. The collision strengths are then averaged over a Maxwellian distribution of electron velocities in order to generate the effective collision strengths. The calculated rate coefficients are compared with available experimental and theoretical data, and some good agreements are found for the outer shell electron excitations. But for the inner shell electron excitations there are still some differences between the present calculations and available experiments.
基金supported by the National Natural Science Foundation of China(No.21573027)
文摘The prototype tetra-atomic reaction F+H2O→HF+OH plays a significant role in both atmospheric and astronomical chemistry.In this work,thermal rate coefficients of this reaction are determined with the ring polymer molecular dynamics(RPMD)method on a full-dimensional potential energy surface(PES).This PES is the most accurate one for the title reaction,as demonstrated by the correct barrier height and reaction energy,compared to the benchmark calculations by the focal point analysis and the high accuracy extrapolated ab initio thermochemistry methods.The RPMD rate coefficients are in excellent agreement with those calculated by the semiclassical transition state theory and a two-dimensional master equation technique,and some experimental measurements.As has been found in many RPMD applications,quantum effects,including tunneling and zero-point energy effects,can be efficiently and effectively captured by the RPMD method.In addition,the convergence of the results with respect to the number of beads is rapid,which is also consistent with previous RPMD applications.
基金the "Comite Mixté Franco-Tunisien pour la Coopération Universitaire(Partenariat Hubert Curien,Utique,Tunisie)"for its financial support in the achievement of this work
文摘A method based upon the weighted total cross section (WTCS) theory is proposed to calculate the photo-ionisation cross sections and the radiative recombination rate coefficients between the fundamental level of CO and the main electronic states of its corresponding ion. Total photo-ionisation cross sections and radiative recombination rate coefficients are determined from the calculation of elementary vibrational photo-ionisation cross sections. Transitions be- tween CO+(X, A and B) and CO(X) are considered. Total photo-ionisation cross sections and recombination coefficients are computed in the temperature interval 500-15000 K.
基金Supported by the International Thermonuclear Experimental Reactor Project of China under Grant No 2013GB114003the National Natural Science Foundation of China under Grant No 11275135
文摘Fusion power output is proportional not only to the fuel particle number densities participating in reaction but also to the fusion reaction rate coefficient (or reactivity), which is dependent on reactant velocity distribution functions. They are usuMly assumed to be dual Maxwellian distribution functions with the same temperature for thermal nuclear fusion circumstances. However, if high power neutral beam injection and minority ion species ICRF plasma heating, or multi-pinched plasma beam head-on collision, in a converging region are required and investigated in future large scale fusion reactors, then the fractions of the injected energetic fast ion tail resulting from ionization or charge exchange will be large enough and their contribution to the non-Maxwellian distribution functions is not negligible, hence to the fusion reaction rate coefficient or calculation of fusion power. In such cases, beam-target, and beam-beam reaction enhancement effect contributions should play very important roles. In this paper, several useful formulae to calculate the fusion reaction rate coefticient for different beam and target combination scenarios are derived in detail
文摘A set of experiments is carried out in a towing tank to study the effects of the curvature of perforated plates on the wave reflection coefficient (Cr). The curvature of a perforated plate can be changed by rotating a reference perforated plate about its origin point according to the parabolic equation y=-x2 A plunger-type wave maker is used to generate regular waves. The reflection coefficients are calculated using Goda and Suzuki’s (1976) method. The results are compared with those of vertical or sloped passive wave absorbers. The comparison shows that a perforated plate with a curved profile is highly efficient in terms of reducing the wave reflection coefficient. A correlation is established to estimate the reflection coefficient of curved perforated plates as a function of both flow and geometry characteristics.