The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(...The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(nano-Te)materials reported to date suffer from a series of drawbacks,including limited light absorption and a lack of surface structures.Herein,we report the preparation of nano-Te by electrochemical exfoliation using an electrolyzable room-temperature ionic liquid.Anions,cations,and their corresponding electrolytic products acting as chemical scissors can precisely intercalate and functionalize bulk Te.The resulting nano-Te has high morphological entropy,rich surface functional groups,and broad light absorption.We also constructed foam hydrogels based on poly(vinyl alcohol)/nano-Te,which achieved an evaporation rate and energy efficiency of 4.11 kg m^(−2)h^(−1)and 128%,respectively,under 1 sun irradiation.Furthermore,the evaporation rate was maintained in the range 2.5-3.0 kg m^(−2)h^(−1)outdoors under 0.5-1.0 sun,providing highly efficient evaporation under low light conditions.展开更多
This paper demonstrates an intrinsic modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films.The(NiCuCrFeSi)N((NCCFS)N)films were deposited by a magnetron s...This paper demonstrates an intrinsic modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films.The(NiCuCrFeSi)N((NCCFS)N)films were deposited by a magnetron sputtering system.Rutherford backscattering spectroscopy analysis confirms the uniform composition and good homogeneity of these high-entropy films.The real and imaginary parts of the permittivity for the(NCCFS)N material are calculated on the basis of the reflectance spectral fitting results.A redshift cutoff wavelength of the reflectance spectrum with increasing nitrogen gas flow rate exists because of the different levels of dispersion when changing nitrogen content.To realize significant solar absorption,the film surface was reconstituted to match its impedance with air by designing a pyramid nanostructure metasurface.Compared with the absorptance of the as-deposited films,the designed metasurface obtains a significant improvement in solar absorption with the absorptance increasing from 0.74 to 0.99.The metasurfaces also show low mid-infrared emissions with thermal emittance that can be as low as 0.06.These results demonstrate a new idea in the design of solar selective absorbing surface with controllable absorptance and low infrared emission for high-efficiency photo-thermal conversion.展开更多
According to the classical mechanics the energy of a celestial body circulating in the solar system is a constant term. This energy is defined by the masses product of the larger and smaller body entering into a mutua...According to the classical mechanics the energy of a celestial body circulating in the solar system is a constant term. This energy is defined by the masses product of the larger and smaller body entering into a mutual attraction as well as the size of the major semiaxis characteristic for the corresponding Kepler orbit. A special situation concerns the planet interaction with the Sun because of a systematic decrease of the Sun mass due to the luminosity effect. The aim of the paper is to point out that even in the case of perfectly constant interacting masses the energy of the moving body should decrease when a quantum treatment of the body motion is considered. The rate of the energy decrease is extremely small, nevertheless it gives a shortening of the distance between the interacting bodies leading to a final effect of a touch of the larger body and a smaller one.展开更多
ZnSe quantum dot (QD) semiconductor optical amplifier (SOA) is studied theoretically using net gain for linear Absorption coefficient and linear emission and these results are used to calculate noise figure and small-...ZnSe quantum dot (QD) semiconductor optical amplifier (SOA) is studied theoretically using net gain for linear Absorption coefficient and linear emission and these results are used to calculate noise figure and small-signal gain.展开更多
This paper investigated radiation heat transfer and temperature distributions of solar thermochemical reactor for syngas production using the finite volume discrete ordinate method (fvDOM) and P1 approximation for r...This paper investigated radiation heat transfer and temperature distributions of solar thermochemical reactor for syngas production using the finite volume discrete ordinate method (fvDOM) and P1 approximation for radiation heat transfer. Different parameters including absorptivity, emissivity, reflection based radiation scatter- ing, and carrier gas flow inlet velocity that would greatly affect the reactor thermal performance were sufficiently investigated. The fvDOM approximation was used to obtain the radiation intensity distribution along the reactor. The drop in the temperature resulted from the radiation scattering was further investigated using the P1 approx- imation. The results indicated that the reactor temperature difference between the P1 approximation and the fvDOM radiation model was very close under different operating conditions. However, a big temperature difference which increased with an increase in the radiation emissivity due to the thermal non-equilibrium was observed in the radiation inlet region. It was found that the incident radiation flux distribution had a strong impact on the temperature distribution throughout the reactor. This paper revealed that the temperature drop caused by the boundary radiation heat loss should not be neglected for the thermal performance analysis of solar thermochemical reactor.展开更多
This research study compares the steady-state and dynamic behaviour of a solar-powered activated carbon-35(AC35)/methanol-based vapour adsorption refrigeration system for production of ice at hot climate region.Ther-m...This research study compares the steady-state and dynamic behaviour of a solar-powered activated carbon-35(AC35)/methanol-based vapour adsorption refrigeration system for production of ice at hot climate region.Ther-modynamic comparisons are made with the coefficient of performance(COP),system COP(SCOP),specific refrig-eration capacity(SRC)and critical parameters such as cycle time and ice production rate are quantified.Further,the sustainability of the proposed ice maker has proven by integrating economic and environmental perceptions.The minimum solar flux required to ensure continuous ice production was found 800 W/m^(2).Moreover,the max-imum ice production rate and COP were decreased by 32.36%and 37.63%respectively when the system was operated under real ambient conditions.The proposed solar adsorptive ice maker achieved maximum SRC of 61.6 g m^(−2)during April month and reduced the CO_(2)emissions by 12.82 ton annually.展开更多
The two-stream approximation is applied to solve the multiple scattered radiation transfer equations for an inhomogeneous aerosol atmosphere.The accurate absorption of water vapor,ozone,carbon dioxide and molecular ox...The two-stream approximation is applied to solve the multiple scattered radiation transfer equations for an inhomogeneous aerosol atmosphere.The accurate absorption of water vapor,ozone,carbon dioxide and molecular oxygen is calculated.Calculations have been carried out band by band for the beating rate of atmosphere.The results show that the effect of aerosols on solar heating of the atmosphere is significant.展开更多
基金the Science and Technology Innovation Council of Shenzhen(Grant Nos.JCYJ20200109105212568,KQTD20170810105439418,JCYJ20200109114237902,20200812203318002,and 20200810103814002)the National Natural Science Foundation of China(Grant No.12274197)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515030240,2019A1515010790,2021A0505110015).
文摘The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(nano-Te)materials reported to date suffer from a series of drawbacks,including limited light absorption and a lack of surface structures.Herein,we report the preparation of nano-Te by electrochemical exfoliation using an electrolyzable room-temperature ionic liquid.Anions,cations,and their corresponding electrolytic products acting as chemical scissors can precisely intercalate and functionalize bulk Te.The resulting nano-Te has high morphological entropy,rich surface functional groups,and broad light absorption.We also constructed foam hydrogels based on poly(vinyl alcohol)/nano-Te,which achieved an evaporation rate and energy efficiency of 4.11 kg m^(−2)h^(−1)and 128%,respectively,under 1 sun irradiation.Furthermore,the evaporation rate was maintained in the range 2.5-3.0 kg m^(−2)h^(−1)outdoors under 0.5-1.0 sun,providing highly efficient evaporation under low light conditions.
基金the National Natural Science Foundation of China(Nos.51732001,U1832219,and 51972013)Beijing Natural Science Foundation(No.2182035)+1 种基金the Fundamental Research Funds for the Central Universities,the Program of China Scholarships Council(No.201806020161)the Academic Excellence Foundation of Beihang University(BUAA)for Ph.D.Students.
文摘This paper demonstrates an intrinsic modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films.The(NiCuCrFeSi)N((NCCFS)N)films were deposited by a magnetron sputtering system.Rutherford backscattering spectroscopy analysis confirms the uniform composition and good homogeneity of these high-entropy films.The real and imaginary parts of the permittivity for the(NCCFS)N material are calculated on the basis of the reflectance spectral fitting results.A redshift cutoff wavelength of the reflectance spectrum with increasing nitrogen gas flow rate exists because of the different levels of dispersion when changing nitrogen content.To realize significant solar absorption,the film surface was reconstituted to match its impedance with air by designing a pyramid nanostructure metasurface.Compared with the absorptance of the as-deposited films,the designed metasurface obtains a significant improvement in solar absorption with the absorptance increasing from 0.74 to 0.99.The metasurfaces also show low mid-infrared emissions with thermal emittance that can be as low as 0.06.These results demonstrate a new idea in the design of solar selective absorbing surface with controllable absorptance and low infrared emission for high-efficiency photo-thermal conversion.
文摘According to the classical mechanics the energy of a celestial body circulating in the solar system is a constant term. This energy is defined by the masses product of the larger and smaller body entering into a mutual attraction as well as the size of the major semiaxis characteristic for the corresponding Kepler orbit. A special situation concerns the planet interaction with the Sun because of a systematic decrease of the Sun mass due to the luminosity effect. The aim of the paper is to point out that even in the case of perfectly constant interacting masses the energy of the moving body should decrease when a quantum treatment of the body motion is considered. The rate of the energy decrease is extremely small, nevertheless it gives a shortening of the distance between the interacting bodies leading to a final effect of a touch of the larger body and a smaller one.
文摘ZnSe quantum dot (QD) semiconductor optical amplifier (SOA) is studied theoretically using net gain for linear Absorption coefficient and linear emission and these results are used to calculate noise figure and small-signal gain.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 51522601 and 51421063) and the program for New Century Excellent Talents in University (Grant No. NCET- 13-0173).
文摘This paper investigated radiation heat transfer and temperature distributions of solar thermochemical reactor for syngas production using the finite volume discrete ordinate method (fvDOM) and P1 approximation for radiation heat transfer. Different parameters including absorptivity, emissivity, reflection based radiation scatter- ing, and carrier gas flow inlet velocity that would greatly affect the reactor thermal performance were sufficiently investigated. The fvDOM approximation was used to obtain the radiation intensity distribution along the reactor. The drop in the temperature resulted from the radiation scattering was further investigated using the P1 approx- imation. The results indicated that the reactor temperature difference between the P1 approximation and the fvDOM radiation model was very close under different operating conditions. However, a big temperature difference which increased with an increase in the radiation emissivity due to the thermal non-equilibrium was observed in the radiation inlet region. It was found that the incident radiation flux distribution had a strong impact on the temperature distribution throughout the reactor. This paper revealed that the temperature drop caused by the boundary radiation heat loss should not be neglected for the thermal performance analysis of solar thermochemical reactor.
文摘This research study compares the steady-state and dynamic behaviour of a solar-powered activated carbon-35(AC35)/methanol-based vapour adsorption refrigeration system for production of ice at hot climate region.Ther-modynamic comparisons are made with the coefficient of performance(COP),system COP(SCOP),specific refrig-eration capacity(SRC)and critical parameters such as cycle time and ice production rate are quantified.Further,the sustainability of the proposed ice maker has proven by integrating economic and environmental perceptions.The minimum solar flux required to ensure continuous ice production was found 800 W/m^(2).Moreover,the max-imum ice production rate and COP were decreased by 32.36%and 37.63%respectively when the system was operated under real ambient conditions.The proposed solar adsorptive ice maker achieved maximum SRC of 61.6 g m^(−2)during April month and reduced the CO_(2)emissions by 12.82 ton annually.
文摘The two-stream approximation is applied to solve the multiple scattered radiation transfer equations for an inhomogeneous aerosol atmosphere.The accurate absorption of water vapor,ozone,carbon dioxide and molecular oxygen is calculated.Calculations have been carried out band by band for the beating rate of atmosphere.The results show that the effect of aerosols on solar heating of the atmosphere is significant.