In this paper,we consider a wireless ad hoc network consisting of multiple source nodes transmitting to their respective destinations,where an eavesdropper attempts to intercept their transmissions.We propose an optim...In this paper,we consider a wireless ad hoc network consisting of multiple source nodes transmitting to their respective destinations,where an eavesdropper attempts to intercept their transmissions.We propose an optimal transmission scheduling scheme to defend against the eavesdropper,where a source node having the highest secrecy rate is scheduled to access the wireless medium for transmitting to its destination in an opportunistic manner.To be specific,the secrecy rate between a pair of the source and destination in the presence of an eavesdropper varies temporally due to the wireless fading effect.The proposed optimal transmission scheduling scheme opportunistically selects a source node with the highest secrecy rate to transmit its data for the sake of maximizing the security of the ad hoc network against eavesdropping attacks.For comparison purposes,we also consider the conventional round-robin scheduling as a benchmark,where multiple source nodes take turns in accessing their shared wireless medium for transmitting to their respective destinations.We derive closed-form secrecy outage probability expressions of both the round-robin scheduling and the proposed optimal scheduling schemes over Rayleigh fading environments.Numerical results show that the proposed transmission scheduling scheme outperforms the conventional round-robin method in terms of its secrecy outage probability.Additionally,upon increasing the number of source-destination pairs,the secrecy outage probability of the round-robin scheme keeps unchanged,whereas the secrecy outage performance of the proposed transmission scheduling significantly improves,showing the security benefits of exploiting transmission scheduling for protecting wireless ad hoc networks against eavesdropping.展开更多
As for the supply chain consisting of a manufacturer and multiple competing retailers, the disruption management decision is considered for the demand disruption that both the investment sensitivity coefficient and th...As for the supply chain consisting of a manufacturer and multiple competing retailers, the disruption management decision is considered for the demand disruption that both the investment sensitivity coefficient and the investment-elasticity are changed simultaneously. Meanwhile, the corresponding solutions are given for different cases of the disruption, and the characteristics of the solutions are analyzed. The production plan is proved to he robustness under certain conditions, and the production plan of the coordination strategy is investigated for the disruption with appropriate contractual arrangement, i. e. , a subside rate schedule. Mutual restraints exist between the changed investment sensitivity coefficient and the investment-elasticity when the coordination mecha- nism is used. And the more the number of the retailers in the system, the more the subside provided by the suppler on the coordinaton strategy.展开更多
In order to improve the transmission accuracy and efficiency of sensing and actuating signals in Internet of Things (loT) and ensure the system stability, an adaptive resource allocation algorithm is proposed, which...In order to improve the transmission accuracy and efficiency of sensing and actuating signals in Internet of Things (loT) and ensure the system stability, an adaptive resource allocation algorithm is proposed, which dynami- cally assigns the network bandwidth and priority among components according to their signals' frequency domain characteristics. A remote sensed and controlled unmanned ground vehicle (UGV) path tracking test-bed was devel- oped and multiple UGV's tracking error signals were measured in the simulation for performance evaluation. Results show that with the same network bandwidth constraints, the proposed algorithm can reduce,, the accumulated and maximum errors of UGV path tracking by over 60% compared with the conventional static algorithm.展开更多
Due to its specificity, seasonality and location of large areas, the crops are exposed to the greatest degree of risks posed by climate change. To maintain stability and increase yields, it is imperative to implement ...Due to its specificity, seasonality and location of large areas, the crops are exposed to the greatest degree of risks posed by climate change. To maintain stability and increase yields, it is imperative to implement an innovative approach by which to optimize certain processes such as tillage, sowing and irrigation. The main tasks of innovative solutions are proposed to increase the soil water holding capacities in the root layer over a prolonged period of time, and improve the accuracy of the drilling process for row crops and vegetables by using biodegradable materials, and on this basis to optimize the irrigation by use of specialized software products to determine irrigation scheduling and irrigation requirements.展开更多
基金supported by the Natural Science Foundation of Anhui Provincial Education Department under Grant No.KJ2013Z048the Natural Science Foundation of Anhui Provincial Colleges and Universities under Grant No.KJ2014A234
文摘In this paper,we consider a wireless ad hoc network consisting of multiple source nodes transmitting to their respective destinations,where an eavesdropper attempts to intercept their transmissions.We propose an optimal transmission scheduling scheme to defend against the eavesdropper,where a source node having the highest secrecy rate is scheduled to access the wireless medium for transmitting to its destination in an opportunistic manner.To be specific,the secrecy rate between a pair of the source and destination in the presence of an eavesdropper varies temporally due to the wireless fading effect.The proposed optimal transmission scheduling scheme opportunistically selects a source node with the highest secrecy rate to transmit its data for the sake of maximizing the security of the ad hoc network against eavesdropping attacks.For comparison purposes,we also consider the conventional round-robin scheduling as a benchmark,where multiple source nodes take turns in accessing their shared wireless medium for transmitting to their respective destinations.We derive closed-form secrecy outage probability expressions of both the round-robin scheduling and the proposed optimal scheduling schemes over Rayleigh fading environments.Numerical results show that the proposed transmission scheduling scheme outperforms the conventional round-robin method in terms of its secrecy outage probability.Additionally,upon increasing the number of source-destination pairs,the secrecy outage probability of the round-robin scheme keeps unchanged,whereas the secrecy outage performance of the proposed transmission scheduling significantly improves,showing the security benefits of exploiting transmission scheduling for protecting wireless ad hoc networks against eavesdropping.
基金Supported by the Scientific Research Foundation for Young Faulty of Nanjing University of Aeronautics & Astronautics(S0670-082)~~
文摘As for the supply chain consisting of a manufacturer and multiple competing retailers, the disruption management decision is considered for the demand disruption that both the investment sensitivity coefficient and the investment-elasticity are changed simultaneously. Meanwhile, the corresponding solutions are given for different cases of the disruption, and the characteristics of the solutions are analyzed. The production plan is proved to he robustness under certain conditions, and the production plan of the coordination strategy is investigated for the disruption with appropriate contractual arrangement, i. e. , a subside rate schedule. Mutual restraints exist between the changed investment sensitivity coefficient and the investment-elasticity when the coordination mecha- nism is used. And the more the number of the retailers in the system, the more the subside provided by the suppler on the coordinaton strategy.
基金Supported by Natural Science Foundation of Tianjin (No. 07JCZDJC05800)Science and Technology Supporting Plan of Tianjin (No. 09ZCKFGX29200)
文摘In order to improve the transmission accuracy and efficiency of sensing and actuating signals in Internet of Things (loT) and ensure the system stability, an adaptive resource allocation algorithm is proposed, which dynami- cally assigns the network bandwidth and priority among components according to their signals' frequency domain characteristics. A remote sensed and controlled unmanned ground vehicle (UGV) path tracking test-bed was devel- oped and multiple UGV's tracking error signals were measured in the simulation for performance evaluation. Results show that with the same network bandwidth constraints, the proposed algorithm can reduce,, the accumulated and maximum errors of UGV path tracking by over 60% compared with the conventional static algorithm.
文摘Due to its specificity, seasonality and location of large areas, the crops are exposed to the greatest degree of risks posed by climate change. To maintain stability and increase yields, it is imperative to implement an innovative approach by which to optimize certain processes such as tillage, sowing and irrigation. The main tasks of innovative solutions are proposed to increase the soil water holding capacities in the root layer over a prolonged period of time, and improve the accuracy of the drilling process for row crops and vegetables by using biodegradable materials, and on this basis to optimize the irrigation by use of specialized software products to determine irrigation scheduling and irrigation requirements.