When the filler-bitumen ratio of asphalt mortar changes, its adhesion and viscoelasticity will also change, as well as its performance at the high and low temperatures, fatigue durability, and ductility. Thus, the app...When the filler-bitumen ratio of asphalt mortar changes, its adhesion and viscoelasticity will also change, as well as its performance at the high and low temperatures, fatigue durability, and ductility. Thus, the appropriate fillerbitumen ratio directly affects the asphalt mortar's performance. This paper tested the physical indexes of the No. 70 matrix asphalt mortar modified by additive Sasobit (SB) and Sasowam (SW) through dynamic shear rheometer and bending beam rheometer under different temperature conditions, and comprehensively analyzed the high-temperature anti-rutting and fatigue performance, low-temperature crack resistance performance, and ductility of asphalt mortar. The results show that ore powder not only can increase the antirutting factor but also can increase the aging resistance of asphalt. SB has better performances than SW at high temperatures. As for the filler-bitumen ratio of asphalt mortar with additive SB, the recommended value is between 0.8 and 1.2, and the value may be a little larger for that with SW.展开更多
To understand the effects offiller-asphalt ratio on different properties of lignin and polyesterfiber reinforced shape memory polyurethane(SMPU)/styrene butadiene styrene(SBS)composite modified asphalt mortar(PSAM),as we...To understand the effects offiller-asphalt ratio on different properties of lignin and polyesterfiber reinforced shape memory polyurethane(SMPU)/styrene butadiene styrene(SBS)composite modified asphalt mortar(PSAM),as well as to reveal the reinforcing and toughening mechanisms of lignin and polyesterfibers on PSAM,SMPU,SBS and mineral powder werefirst utilized to prepare PSAM.Then the conventional,rheological and anti-cracking properties of ligninfiber reinforced PSAM(LFAM)and polyesterfiber reinforced PSAM(PFAM)at dif-ferentfiller-asphalt ratios were characterized.Test results indicate that the shear strength,deformation resistance and viscosity are increased after adding 0.8wt%ligninfiber or polyesterfiber and increasing thefiller-asphalt ratio from 0.8 to 1.2.The optimalfiller-asphalt ratio of 1.0 is proposed after comprehensive performance assessments of PSAM.Polyesterfiber shows a better reinforcing effect than ligninfiber,but its improvement in the thermal stability of PSAM is not significant at high temperatures.Additionally,the complex modulus,storage modulus,loss modulus and rutting resistance factor of PSAM are improved after adding ligninfiber and polyesterfiber,as well as show an increasing trend as thefiller-asphalt ratio is raised,but the phase angle is gradually decreased.Further,the increase of elastic components in PSAM effectively enhances the anti-deformation ability of PSAM at high temperatures,and polyesterfiber more obviously improves the high-temperature deformation resistance of PSAM than ligninfiber.Finally,the anti-cracking performance of PFAM and LFAM at low temperatures is reduced by 74.2%and 46.7%,respectively,as thefiller-asphalt ratio is raised from 0.8 to 1.2.The low-temperature anti-cracking performance of LFAM is lower than that of PFAM at the samefiller-asphalt ratio,even lower than that of PSA.Compared with ligninfiber,the anti-cracking performance and deformation resistance of PSAM at low temperature is more greatly enhanced by polyester fiber.展开更多
Used as flame returdant of tunnel asphalt pavement, organic bromides produce a large amount of poisons and smoke in construction and flame retardation stage. The alkaline filler was found to replace mineral filler, ...Used as flame returdant of tunnel asphalt pavement, organic bromides produce a large amount of poisons and smoke in construction and flame retardation stage. The alkaline filler was found to replace mineral filler, and the flame- retarded asphalt mixtures were produced. Experimental results show that these asphalt mixtures are smoke restrained ; the performances and construction technology of asphalt pavement are not influenced; also the alkaline filler is of low-price. So this kind of flame-retarded asphalt mixtures is suitable for tunnel patement.展开更多
The objective of this paper was to develop a comprehensive evaluation method and index to evaluate the performance of sealants and fillers for cracks in asphalt concrete pavements using the method of principal compone...The objective of this paper was to develop a comprehensive evaluation method and index to evaluate the performance of sealants and fillers for cracks in asphalt concrete pavements using the method of principal component analysis. The performance experiments including cone penetration, softening point, flow, resilience and tension at low temperature respectively were conducted by reference of ASTM D5329 for eight sealants and fillers often used in China. There by a principal component model was developed and weight of every index was calculated. The experimental results show that there are significantly different performances for sealants and fillers often used in China. Principal component analysis is an objective method that evaluates and selects the performance of sealants and fillers for cracks in asphalt concrete pavements.展开更多
In this paper we investigate the reinforcement mechanism of high viscosity rubber/SBS modified asphalt mortar mixed with fiber (mineral, lignin or carbon fiber) and deoiled asphalt (DOA). The softening point, pene...In this paper we investigate the reinforcement mechanism of high viscosity rubber/SBS modified asphalt mortar mixed with fiber (mineral, lignin or carbon fiber) and deoiled asphalt (DOA). The softening point, penetration and viscosity tests were conducted to characterize the engineering properties of asphalt-fiber mortar. The microstructure of fiber was observed using scanning electron microscopy (SEM), and the results indicated that fiber can effectively improve the toughness of asphalt matrix through forming a spatial network structure, and then adhesion and stabilization of asphalt binder. The cone penetration test was designed to study the rheological property of fiber modified asphalt. The results indicated that the reinforcement effect increased with fibers and DOA fraction increasing to a certain threshold, and the optimal fiber content was dependent on the fiber type and its length. Fiber content and filler-asphalt ratio had significant effects on the softening point, penetration, viscosity and cone penetration of asphalt mortar.展开更多
To evaluate the homogeneity of asphalt mixtures,the images of sections obtained by cutting the asphalt mixtures specimen horizontally or vertically were analyzed with digital image processing techniques,and the partic...To evaluate the homogeneity of asphalt mixtures,the images of sections obtained by cutting the asphalt mixtures specimen horizontally or vertically were analyzed with digital image processing techniques,and the particle area ratio was achieved by applying sector scan for horizontal specimen and vertical scan for vertical one.The research result indicates that the influence of random distribution of aggregates in cutting the specimen can be eliminated by using colored aggregates to distinguish coarse and fine aggregates and using color threshold to segment the images.Choosing three typical gradations,proving particle area ratio obeying normal distribution and using the variability of particle area ratio as an index,it is feasible to quantitatively evaluate the homogeneity of asphalt mixtures.展开更多
In order to analyze the effect of different loading frequencies on the fatigue performance for asphalt mixture,the changing law of asphalt mixture strengths with loading speed was revealed by strength tests under diff...In order to analyze the effect of different loading frequencies on the fatigue performance for asphalt mixture,the changing law of asphalt mixture strengths with loading speed was revealed by strength tests under different loading speeds.Fatigue equations of asphalt mixtures based on the nominal stress ratio and real stress ratio were established using fatigue tests under different loading frequencies.It was revealed that the strength of the asphalt mixture is affected by the loading speed greatly.It was also discovered that the fatigue equation based on the nominal stress ratio will change with the change of the fatigue loading speed.There is no uniqueness.But the fatigue equation based on the real stress ratio doesn't change with the loading frequency.It has the uniqueness.The results indicate the fatigue equation based on the real stress ratio can realize the normalization of the asphalt mixture fatigue equation under different loading frequencies.It can greatly benefit the analysis of the fatigue characteristics under different vehicle speeds for asphalt pavement.展开更多
Different aging levels(RTFOT,PAV-10h,PAV-20h and PAV-30 h) of asphalt binders with various mass ratios of mineral powder to asphalt(0,0.4,0.8,1.2,1.6,2.0) were used to investigate the rheological properties of aged as...Different aging levels(RTFOT,PAV-10h,PAV-20h and PAV-30 h) of asphalt binders with various mass ratios of mineral powder to asphalt(0,0.4,0.8,1.2,1.6,2.0) were used to investigate the rheological properties of aged asphalt binders with respect to their short and long terms aging characteristics.Viscosity test,dynamic shear test and creep test were conducted.The test results indicate that the viscosity of aged asphalt binder increases sharply with the extension of aging period.Complex shear modulus of aged asphalt increases,which indicates that the stiffness of asphalt binders can increase.The phase angle for aged asphalt binders reduces,which indicates that the elastic portion for viscoelastic property of asphalt binders increases.|G*|·sin δ increases after aging procedure which means that the fatigue resistance becomes poor.The creep test results show that creep strain curves varies remarkably for virgin and aged asphalt binders.The total strain during loading period and the permanent strain decreases significantly for aged asphalt binders,which implies that the elastic portion increases and the viscous portion decreases.展开更多
The aim of this study is to investigate the asphalt mixture anisotropy of both the modulus and Poisson's ratio due to air voids using a discrete element modeling simulation method. Three three-dimensional cubic digit...The aim of this study is to investigate the asphalt mixture anisotropy of both the modulus and Poisson's ratio due to air voids using a discrete element modeling simulation method. Three three-dimensional cubic digital samples of asphalt mixture with different shapes of single air void were built using discrete element software PFC^(3D). The aggregate gradation, air voids and mastic included in the digital samples were modeled using different contact models, with due consideration of the volumetric fractions of the different phases. Laboratory uniaxial complex modulus test and indirect tensile strength test were conducted to obtain material input parameters for numerical modeling. Simulation of the uniaxial cyclic compressive tests was performed on the three cubic samples loaded in three different directions. Dynamic modulus in three directions and Poisson's ratio in six directions were calculated from the compression stress-strain responses. Results show that both the modulus and Poisson's ratio are dependent on the preferential orientation of air voids. The anisotropy of the modulus and Poisson's ratio increases as the pressure loading on the asphalt mixture increases. Compared to the modulus, Poisson's ratio due to air voids has been shown to be more anisotropic. The maximum of Poisson's ratio and modulus is shown to be up to 80% and 11% higher than the minimum, respectively.展开更多
This study was conducted to assess the performance of modified asphalt binders and engineering properties of mixtures prepared with incorporation 3 vol%and 6 vol%of calcium carbonate(CaCO3),linear low-density polyethy...This study was conducted to assess the performance of modified asphalt binders and engineering properties of mixtures prepared with incorporation 3 vol%and 6 vol%of calcium carbonate(CaCO3),linear low-density polyethylene(LLDPE),and combinations of CaCO3 and LLDPE.The rheological properties of control and modified asphalt binders were evaluated using a series of testing such as rotational viscometer(RV),multiple stress creep recovery(MSCR)and bending beam rheometer(BBR)tests.Meanwhile,four-point beam fatigue test,the dynamic modulus(E*)test and tensile strength ratio(TSR)test were conducted to assess the engineering properties of asphalt mixtures.Based on the findings,the RV and MSCR test result shows that all modified asphalt binders have improved performance in comparison to the neat asphalt binders in terms of higher viscosity and improved permanent deformation resistance.A higher amount of CaCO3 and LLDPE have led modified asphalt binders to better recovery percentage,except the asphalt binders modified using a combination of CaCO3 and LLDPE.However,the inclusion of LLDPE into asphalt binder has lowered the thermal cracking resistance.The incorporation of CaCO3 in asphalt mixtures was found beneficial,especially in improving the ability to resist fatigue cracking of asphalt mixture.In contrast,asphalt mixtures show better moisture sensitivity through the addition of LLDPE.The addition of LLDPE has significantly enhanced the indirect tensile strength values and tensile strength ratio of asphalt mixtures.展开更多
文摘When the filler-bitumen ratio of asphalt mortar changes, its adhesion and viscoelasticity will also change, as well as its performance at the high and low temperatures, fatigue durability, and ductility. Thus, the appropriate fillerbitumen ratio directly affects the asphalt mortar's performance. This paper tested the physical indexes of the No. 70 matrix asphalt mortar modified by additive Sasobit (SB) and Sasowam (SW) through dynamic shear rheometer and bending beam rheometer under different temperature conditions, and comprehensively analyzed the high-temperature anti-rutting and fatigue performance, low-temperature crack resistance performance, and ductility of asphalt mortar. The results show that ore powder not only can increase the antirutting factor but also can increase the aging resistance of asphalt. SB has better performances than SW at high temperatures. As for the filler-bitumen ratio of asphalt mortar with additive SB, the recommended value is between 0.8 and 1.2, and the value may be a little larger for that with SW.
基金This work was supported by National Natural Science Foundation of China(No.52208440)Natural Science Foundation of Jiangsu Province(BK20210618)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(21KJB580003)National Undergraduate Training Program for Innovation and Entrepreneurship(2021NFUSPITP0638).
文摘To understand the effects offiller-asphalt ratio on different properties of lignin and polyesterfiber reinforced shape memory polyurethane(SMPU)/styrene butadiene styrene(SBS)composite modified asphalt mortar(PSAM),as well as to reveal the reinforcing and toughening mechanisms of lignin and polyesterfibers on PSAM,SMPU,SBS and mineral powder werefirst utilized to prepare PSAM.Then the conventional,rheological and anti-cracking properties of ligninfiber reinforced PSAM(LFAM)and polyesterfiber reinforced PSAM(PFAM)at dif-ferentfiller-asphalt ratios were characterized.Test results indicate that the shear strength,deformation resistance and viscosity are increased after adding 0.8wt%ligninfiber or polyesterfiber and increasing thefiller-asphalt ratio from 0.8 to 1.2.The optimalfiller-asphalt ratio of 1.0 is proposed after comprehensive performance assessments of PSAM.Polyesterfiber shows a better reinforcing effect than ligninfiber,but its improvement in the thermal stability of PSAM is not significant at high temperatures.Additionally,the complex modulus,storage modulus,loss modulus and rutting resistance factor of PSAM are improved after adding ligninfiber and polyesterfiber,as well as show an increasing trend as thefiller-asphalt ratio is raised,but the phase angle is gradually decreased.Further,the increase of elastic components in PSAM effectively enhances the anti-deformation ability of PSAM at high temperatures,and polyesterfiber more obviously improves the high-temperature deformation resistance of PSAM than ligninfiber.Finally,the anti-cracking performance of PFAM and LFAM at low temperatures is reduced by 74.2%and 46.7%,respectively,as thefiller-asphalt ratio is raised from 0.8 to 1.2.The low-temperature anti-cracking performance of LFAM is lower than that of PFAM at the samefiller-asphalt ratio,even lower than that of PSA.Compared with ligninfiber,the anti-cracking performance and deformation resistance of PSAM at low temperature is more greatly enhanced by polyester fiber.
文摘Used as flame returdant of tunnel asphalt pavement, organic bromides produce a large amount of poisons and smoke in construction and flame retardation stage. The alkaline filler was found to replace mineral filler, and the flame- retarded asphalt mixtures were produced. Experimental results show that these asphalt mixtures are smoke restrained ; the performances and construction technology of asphalt pavement are not influenced; also the alkaline filler is of low-price. So this kind of flame-retarded asphalt mixtures is suitable for tunnel patement.
基金Funded by the National Natural Science Foundation of China(Nos.51408287 and 51668038)the Rolls Supported by Program for Changjiang Scholars and Innovative Research Team in University(IRT_15R29)+2 种基金the Distinguished Young Scholars Fund of Gansu Province(1606RJDA318)the Natural Science Foundation of Gansu Province(1506RJZA064)the Excellent Program of Lanzhou Jiaotong University(201606)
文摘The objective of this paper was to develop a comprehensive evaluation method and index to evaluate the performance of sealants and fillers for cracks in asphalt concrete pavements using the method of principal component analysis. The performance experiments including cone penetration, softening point, flow, resilience and tension at low temperature respectively were conducted by reference of ASTM D5329 for eight sealants and fillers often used in China. There by a principal component model was developed and weight of every index was calculated. The experimental results show that there are significantly different performances for sealants and fillers often used in China. Principal component analysis is an objective method that evaluates and selects the performance of sealants and fillers for cracks in asphalt concrete pavements.
基金supported by the National Natural Science Foundation of China (51008307)the Fundamental Research Funds for the Central Universities (09CX04039A)the Graduate Student Innovation Project of China University of Petroleum (East China) (12CX06055A)
文摘In this paper we investigate the reinforcement mechanism of high viscosity rubber/SBS modified asphalt mortar mixed with fiber (mineral, lignin or carbon fiber) and deoiled asphalt (DOA). The softening point, penetration and viscosity tests were conducted to characterize the engineering properties of asphalt-fiber mortar. The microstructure of fiber was observed using scanning electron microscopy (SEM), and the results indicated that fiber can effectively improve the toughness of asphalt matrix through forming a spatial network structure, and then adhesion and stabilization of asphalt binder. The cone penetration test was designed to study the rheological property of fiber modified asphalt. The results indicated that the reinforcement effect increased with fibers and DOA fraction increasing to a certain threshold, and the optimal fiber content was dependent on the fiber type and its length. Fiber content and filler-asphalt ratio had significant effects on the softening point, penetration, viscosity and cone penetration of asphalt mortar.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50808087)
文摘To evaluate the homogeneity of asphalt mixtures,the images of sections obtained by cutting the asphalt mixtures specimen horizontally or vertically were analyzed with digital image processing techniques,and the particle area ratio was achieved by applying sector scan for horizontal specimen and vertical scan for vertical one.The research result indicates that the influence of random distribution of aggregates in cutting the specimen can be eliminated by using colored aggregates to distinguish coarse and fine aggregates and using color threshold to segment the images.Choosing three typical gradations,proving particle area ratio obeying normal distribution and using the variability of particle area ratio as an index,it is feasible to quantitatively evaluate the homogeneity of asphalt mixtures.
基金Projects(51208066,51038002)supported by the National Natural Science Foundation of ChinaProject(20114316120001)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China+5 种基金Project(2012-319-825-150)supported by Application and Basic Research Projects of Ministry of Transport ChinaProject(2013K28)supported by Transportation Science and Technology Plan Projects of Henan Province,ChinaProject(201102)supported by Transportation Science and Technology Plan Projects of Hunan Province,ChinaProject(YB2012B031)supported by Funding Projects of Hunan Provincial Outstanding Doctorate Dissertation,ChinaProject(2014gxjgclkf-002)supported by Open Fund of Key Laboratory of Road Structure and Material of Guangxi Province ChinaProject(kfj120101)supported by Open Fund of the Key Laboratory of Highway Engineering(Changsha University of Science and Technology),China
文摘In order to analyze the effect of different loading frequencies on the fatigue performance for asphalt mixture,the changing law of asphalt mixture strengths with loading speed was revealed by strength tests under different loading speeds.Fatigue equations of asphalt mixtures based on the nominal stress ratio and real stress ratio were established using fatigue tests under different loading frequencies.It was revealed that the strength of the asphalt mixture is affected by the loading speed greatly.It was also discovered that the fatigue equation based on the nominal stress ratio will change with the change of the fatigue loading speed.There is no uniqueness.But the fatigue equation based on the real stress ratio doesn't change with the loading frequency.It has the uniqueness.The results indicate the fatigue equation based on the real stress ratio can realize the normalization of the asphalt mixture fatigue equation under different loading frequencies.It can greatly benefit the analysis of the fatigue characteristics under different vehicle speeds for asphalt pavement.
基金Project(200631800076) supported by 2006 West Science and Technology Project of the Department of Transportation
文摘Different aging levels(RTFOT,PAV-10h,PAV-20h and PAV-30 h) of asphalt binders with various mass ratios of mineral powder to asphalt(0,0.4,0.8,1.2,1.6,2.0) were used to investigate the rheological properties of aged asphalt binders with respect to their short and long terms aging characteristics.Viscosity test,dynamic shear test and creep test were conducted.The test results indicate that the viscosity of aged asphalt binder increases sharply with the extension of aging period.Complex shear modulus of aged asphalt increases,which indicates that the stiffness of asphalt binders can increase.The phase angle for aged asphalt binders reduces,which indicates that the elastic portion for viscoelastic property of asphalt binders increases.|G*|·sin δ increases after aging procedure which means that the fatigue resistance becomes poor.The creep test results show that creep strain curves varies remarkably for virgin and aged asphalt binders.The total strain during loading period and the permanent strain decreases significantly for aged asphalt binders,which implies that the elastic portion increases and the viscous portion decreases.
基金Funded by the National Natural Science Foundation of China(No.51208178)the Fundamental Research Funds for the Central Universities(No.2015B17014)
文摘The aim of this study is to investigate the asphalt mixture anisotropy of both the modulus and Poisson's ratio due to air voids using a discrete element modeling simulation method. Three three-dimensional cubic digital samples of asphalt mixture with different shapes of single air void were built using discrete element software PFC^(3D). The aggregate gradation, air voids and mastic included in the digital samples were modeled using different contact models, with due consideration of the volumetric fractions of the different phases. Laboratory uniaxial complex modulus test and indirect tensile strength test were conducted to obtain material input parameters for numerical modeling. Simulation of the uniaxial cyclic compressive tests was performed on the three cubic samples loaded in three different directions. Dynamic modulus in three directions and Poisson's ratio in six directions were calculated from the compression stress-strain responses. Results show that both the modulus and Poisson's ratio are dependent on the preferential orientation of air voids. The anisotropy of the modulus and Poisson's ratio increases as the pressure loading on the asphalt mixture increases. Compared to the modulus, Poisson's ratio due to air voids has been shown to be more anisotropic. The maximum of Poisson's ratio and modulus is shown to be up to 80% and 11% higher than the minimum, respectively.
基金The authors grateful to express their appreciation to Specialty Minerals Inc.(Bethlehem,PA,USA),Payne&Dolan Inc.(Waukesha,WI,USA),and Dow Chemical Company(Midland,MI,USA)for donating test materials.The authors would like to acknowledge the research assistantships to Mohd Rosli Mohd Hasan,Mohd Khairul Idham Mohd Satar,Muhammad Naqiuddin Mohd Warid,and Nurul Hidayah Mohd Kamaruddin.The authors also want to acknowledge Julia A.King from the Department of Chemical Engineering of Michigan Technological University for her significant contributions in materials preparation,test design,and paper revision.It is impossible for the authors to complete the work without her effort.Any opinions,findings and conclusions expressed in this paper are those of the authors’and do not necessarily reflect the views of the official views and policies of any institution or company.
文摘This study was conducted to assess the performance of modified asphalt binders and engineering properties of mixtures prepared with incorporation 3 vol%and 6 vol%of calcium carbonate(CaCO3),linear low-density polyethylene(LLDPE),and combinations of CaCO3 and LLDPE.The rheological properties of control and modified asphalt binders were evaluated using a series of testing such as rotational viscometer(RV),multiple stress creep recovery(MSCR)and bending beam rheometer(BBR)tests.Meanwhile,four-point beam fatigue test,the dynamic modulus(E*)test and tensile strength ratio(TSR)test were conducted to assess the engineering properties of asphalt mixtures.Based on the findings,the RV and MSCR test result shows that all modified asphalt binders have improved performance in comparison to the neat asphalt binders in terms of higher viscosity and improved permanent deformation resistance.A higher amount of CaCO3 and LLDPE have led modified asphalt binders to better recovery percentage,except the asphalt binders modified using a combination of CaCO3 and LLDPE.However,the inclusion of LLDPE into asphalt binder has lowered the thermal cracking resistance.The incorporation of CaCO3 in asphalt mixtures was found beneficial,especially in improving the ability to resist fatigue cracking of asphalt mixture.In contrast,asphalt mixtures show better moisture sensitivity through the addition of LLDPE.The addition of LLDPE has significantly enhanced the indirect tensile strength values and tensile strength ratio of asphalt mixtures.