Split ratio,i.e.the ratio of stator inner diameter to outer diameter,has a closed relationship with electromagnetic performance of permanent magnet(PM)motors.In this paper,the toroidal windings with short end-winding ...Split ratio,i.e.the ratio of stator inner diameter to outer diameter,has a closed relationship with electromagnetic performance of permanent magnet(PM)motors.In this paper,the toroidal windings with short end-winding axial length are employed in the 6-slot/2-pole(6s/2p)PM motor for high speed applications.The split ratio is optimized together with the ratio of inner slot to outer slot area,i.e.slot ratio,considering stator total loss(stator iron loss and copper loss).In addition,the influence of maximum stator iron flux density and tooth-tip on the optimal split ratio,slot ratio,and average torque is investigated.The analytical predictions show that when the slot ratio is 0.5,the maximum torque can be achieved,and the optimal split ratio increases with the decrease of slot ratio,as confirmed by the finite element(FE)analyses.Finally,some of predicted results are verified by the measured results of 6s/2p prototype motor with 0.5 slot ratio.展开更多
This paper presents effects of design factors on mechanical performance of Vertical Axis Wind Turbines (VAWTs), and an experimental investigation of optimal VAWT performance under low wind speed conditions in Thailand...This paper presents effects of design factors on mechanical performance of Vertical Axis Wind Turbines (VAWTs), and an experimental investigation of optimal VAWT performance under low wind speed conditions in Thailand. Design factors include types of wind turbines, number of blades, types of materials, height-to-radius ratios, and design modifications. Potential VAWT models with different design factors are numerically analyzed within a virtual wind tunnel at various wind speeds by utilizing XflowTM?Computational Fluid Dynamics (CFD) software. The performance curves of each VAWT are obtained as plots of power coefficients against tip speed ratios. It is found that the type of wind turbine, number of blades, and height-to-radius ratio have significant effects on mechanical performance whereas types of materials result in shifts of operating speeds of VAWTs. Accordingly, an optimal VAWT prototype is developed to operate under actual low speed wind conditions. The performance curve from experimental results agrees with the CFD results. The proposed methodology can be used in the computer design of VAWTs to improve mechanical performance before physical fabrication.展开更多
Many research results show that ocean ambient noise and wind speed are highly relevant, and the surface wind speed can be effectively inverted using ocean noise data. In most deep-sea cases, the ambient noise of mediu...Many research results show that ocean ambient noise and wind speed are highly relevant, and the surface wind speed can be effectively inverted using ocean noise data. In most deep-sea cases, the ambient noise of medium frequency is mainly determined by the surface wind, and there is a conventional relationship between them. This paper gives an equation which shows this relationship firstly, and then a surface-wind inversion method is proposed. An efficient particle filter is used to estimate the speed distribution, and the results exhibit more focused close to the actual wind speed. The method is verified by the measured noise data, and analysis results showed that this approach can accurately give the trend of sea surface wind speed.展开更多
Major problem with grid tied micro wind turbine is synchronization and wind variability. Due to this problem the stability of available grid gets reduced. The stability can be achieved by output power control of the t...Major problem with grid tied micro wind turbine is synchronization and wind variability. Due to this problem the stability of available grid gets reduced. The stability can be achieved by output power control of the turbine. Major part of many countries like India, the annual mean wind speed is not high. The rated wind speed of turbine remain around 11 m/s and cut in is around 3.5 m/s. Due to this problem we aimed to develop a sustainable wind energy system that can provide stable power supply even at the locations of low wind speed of 2 - 4 m/s. To address this issue, a momentary impulse or external torque to the rotor by external motor is one of the good options to maintain the momentum of blades and thus provide stability for sufficient time. Various theoretical calculations and experiments are conducted on the above method. This would increase the output power and also the efficiency of wind turbine. We show that Return-On-Investment will be high as compared with other grid connected turbines. Our proposed concept in the present study, if implemented properly, can help the installation of number of wind turbines even at domestic level. It also makes the consumers energy independent and promotes the use of wind as a source of energy and may enter as a rooftop energy supply system similar to solar.展开更多
In order to find the convergence rate of finite sample discrete entropies of a white Gaussian noise(WGN), Brown entropy algorithm is numerically tested.With the increase of sample size, the curves of these finite samp...In order to find the convergence rate of finite sample discrete entropies of a white Gaussian noise(WGN), Brown entropy algorithm is numerically tested.With the increase of sample size, the curves of these finite sample discrete entropies are asymptotically close to their theoretical values.The confidence intervals of the sample Brown entropy are narrower than those of the sample discrete entropy calculated from its differential entropy, which is valid only in the case of a small sample size of WGN. The differences between sample Brown entropies and their theoretical values are fitted by two rational functions exactly, and the revised Brown entropies are more efficient. The application to the prediction of wind speed indicates that the variances of resampled time series increase almost exponentially with the increase of resampling period.展开更多
Ambient noise is very important in the prediction system of a sonar performance, because it determines the detection ranges always in a passive sonar and usually in an active sonar. In the uncertainty issue for the so...Ambient noise is very important in the prediction system of a sonar performance, because it determines the detection ranges always in a passive sonar and usually in an active sonar. In the uncertainty issue for the so-nar performance, it is necessary to know this factor's statistical characteristics that are only obtained by data processing from the underwater ambient noise measurements. Broad-band ambient noise signals from 16 hydrophones were amplified and recorded for 2 min every 1 h. The results show that the ambient noise is essentially depth independent. The cross correlation of the ambient noise levels (1, 6 and 12 h average) with a wind speed is presented. It was found that the correlation is excellent on the upper frequency band and the noise levels correlate better with high wind speed than with low wind speed.展开更多
Flow field around a two-bladed horizontal-axis wind turbine(HAWT)is simulated at various tip speed ratios to investigate its wake characteristics by analyzing the tip and root vortex trajectories in the nearwake,as we...Flow field around a two-bladed horizontal-axis wind turbine(HAWT)is simulated at various tip speed ratios to investigate its wake characteristics by analyzing the tip and root vortex trajectories in the nearwake,as well as the vertical profiles of the axial velocity.Results show that the pitch of the tip vortex varies inversely with the tip speed ratio.Radial expansion of the tip vortices becomes more obvious as the tip speed ratio increases.Tip vortices shed not exactly from the blade tip but from the blade span of 96.5%—99%radius of the rotor.The axial velocity profiles are transformed into V-shape from W-shape at the distance downstream of eight rotor diameters due to the momentum recovery.展开更多
In this work was carried out the aerodynamics design of a 1 MW horizontal axis wind turbine by using blade element momentum theory (BEM). The generated design was scaled and built for testing purposes in the discharge...In this work was carried out the aerodynamics design of a 1 MW horizontal axis wind turbine by using blade element momentum theory (BEM). The generated design was scaled and built for testing purposes in the discharge of an axial flow fan of 80 cm in diameter. Strip theory was used for the aerodynamic performance evaluation. In the numerical calculations was conducted a comparative analysis of the performance curves adding increasingly correction factors to the original equation of ideal flow to reduce the error regarding real operating values got by the experimental tests. Correction factors introduced in the ideal flow equation were the tip loss factor and drag coefficient. BEM results showed good approximation using experimental data for the tip speed ratio less than design. The best approximation of the power coefficient calculation was for tip speed ratio less than 6. BEM method is a tool for practical calculation and can be used for the design and evaluation of wind turbines when the flow rate is not too turbulent and radial velocity components are negligible.展开更多
文摘Split ratio,i.e.the ratio of stator inner diameter to outer diameter,has a closed relationship with electromagnetic performance of permanent magnet(PM)motors.In this paper,the toroidal windings with short end-winding axial length are employed in the 6-slot/2-pole(6s/2p)PM motor for high speed applications.The split ratio is optimized together with the ratio of inner slot to outer slot area,i.e.slot ratio,considering stator total loss(stator iron loss and copper loss).In addition,the influence of maximum stator iron flux density and tooth-tip on the optimal split ratio,slot ratio,and average torque is investigated.The analytical predictions show that when the slot ratio is 0.5,the maximum torque can be achieved,and the optimal split ratio increases with the decrease of slot ratio,as confirmed by the finite element(FE)analyses.Finally,some of predicted results are verified by the measured results of 6s/2p prototype motor with 0.5 slot ratio.
文摘This paper presents effects of design factors on mechanical performance of Vertical Axis Wind Turbines (VAWTs), and an experimental investigation of optimal VAWT performance under low wind speed conditions in Thailand. Design factors include types of wind turbines, number of blades, types of materials, height-to-radius ratios, and design modifications. Potential VAWT models with different design factors are numerically analyzed within a virtual wind tunnel at various wind speeds by utilizing XflowTM?Computational Fluid Dynamics (CFD) software. The performance curves of each VAWT are obtained as plots of power coefficients against tip speed ratios. It is found that the type of wind turbine, number of blades, and height-to-radius ratio have significant effects on mechanical performance whereas types of materials result in shifts of operating speeds of VAWTs. Accordingly, an optimal VAWT prototype is developed to operate under actual low speed wind conditions. The performance curve from experimental results agrees with the CFD results. The proposed methodology can be used in the computer design of VAWTs to improve mechanical performance before physical fabrication.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.11174235 and 61101192)
文摘Many research results show that ocean ambient noise and wind speed are highly relevant, and the surface wind speed can be effectively inverted using ocean noise data. In most deep-sea cases, the ambient noise of medium frequency is mainly determined by the surface wind, and there is a conventional relationship between them. This paper gives an equation which shows this relationship firstly, and then a surface-wind inversion method is proposed. An efficient particle filter is used to estimate the speed distribution, and the results exhibit more focused close to the actual wind speed. The method is verified by the measured noise data, and analysis results showed that this approach can accurately give the trend of sea surface wind speed.
文摘Major problem with grid tied micro wind turbine is synchronization and wind variability. Due to this problem the stability of available grid gets reduced. The stability can be achieved by output power control of the turbine. Major part of many countries like India, the annual mean wind speed is not high. The rated wind speed of turbine remain around 11 m/s and cut in is around 3.5 m/s. Due to this problem we aimed to develop a sustainable wind energy system that can provide stable power supply even at the locations of low wind speed of 2 - 4 m/s. To address this issue, a momentary impulse or external torque to the rotor by external motor is one of the good options to maintain the momentum of blades and thus provide stability for sufficient time. Various theoretical calculations and experiments are conducted on the above method. This would increase the output power and also the efficiency of wind turbine. We show that Return-On-Investment will be high as compared with other grid connected turbines. Our proposed concept in the present study, if implemented properly, can help the installation of number of wind turbines even at domestic level. It also makes the consumers energy independent and promotes the use of wind as a source of energy and may enter as a rooftop energy supply system similar to solar.
文摘In order to find the convergence rate of finite sample discrete entropies of a white Gaussian noise(WGN), Brown entropy algorithm is numerically tested.With the increase of sample size, the curves of these finite sample discrete entropies are asymptotically close to their theoretical values.The confidence intervals of the sample Brown entropy are narrower than those of the sample discrete entropy calculated from its differential entropy, which is valid only in the case of a small sample size of WGN. The differences between sample Brown entropies and their theoretical values are fitted by two rational functions exactly, and the revised Brown entropies are more efficient. The application to the prediction of wind speed indicates that the variances of resampled time series increase almost exponentially with the increase of resampling period.
基金The New Century Excellent Talents in University(NCET Program)of China
文摘Ambient noise is very important in the prediction system of a sonar performance, because it determines the detection ranges always in a passive sonar and usually in an active sonar. In the uncertainty issue for the so-nar performance, it is necessary to know this factor's statistical characteristics that are only obtained by data processing from the underwater ambient noise measurements. Broad-band ambient noise signals from 16 hydrophones were amplified and recorded for 2 min every 1 h. The results show that the ambient noise is essentially depth independent. The cross correlation of the ambient noise levels (1, 6 and 12 h average) with a wind speed is presented. It was found that the correlation is excellent on the upper frequency band and the noise levels correlate better with high wind speed than with low wind speed.
基金supported partly by the National Basic Research Program of China(″973″Program)(No.2014CB046201)the National Natural Science Foundation of China(No.51166009)+5 种基金the National High Technology Research and Development Program of China(No2012AA052900)the Natural Science Foundation of Gansu ProvinceChina(No.1308RJZA283145RJZA059)the Gansu Province University Scientific Research ProjectChina(No.2013A-026)
文摘Flow field around a two-bladed horizontal-axis wind turbine(HAWT)is simulated at various tip speed ratios to investigate its wake characteristics by analyzing the tip and root vortex trajectories in the nearwake,as well as the vertical profiles of the axial velocity.Results show that the pitch of the tip vortex varies inversely with the tip speed ratio.Radial expansion of the tip vortices becomes more obvious as the tip speed ratio increases.Tip vortices shed not exactly from the blade tip but from the blade span of 96.5%—99%radius of the rotor.The axial velocity profiles are transformed into V-shape from W-shape at the distance downstream of eight rotor diameters due to the momentum recovery.
文摘In this work was carried out the aerodynamics design of a 1 MW horizontal axis wind turbine by using blade element momentum theory (BEM). The generated design was scaled and built for testing purposes in the discharge of an axial flow fan of 80 cm in diameter. Strip theory was used for the aerodynamic performance evaluation. In the numerical calculations was conducted a comparative analysis of the performance curves adding increasingly correction factors to the original equation of ideal flow to reduce the error regarding real operating values got by the experimental tests. Correction factors introduced in the ideal flow equation were the tip loss factor and drag coefficient. BEM results showed good approximation using experimental data for the tip speed ratio less than design. The best approximation of the power coefficient calculation was for tip speed ratio less than 6. BEM method is a tool for practical calculation and can be used for the design and evaluation of wind turbines when the flow rate is not too turbulent and radial velocity components are negligible.