Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carb...Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carbon and nitrogen nutrition balance of soils. We studied the characteristics of soil organic carbon and total nitrogen by investigating a large number of apple orchards in major apple production areas in China. High apple orchard soil organic carbon content was observed in the provinces of Heilongjiang, Xinjiang, and Yunnan, whereas low content was found in the provinces of Shandong, Henan, Hebei, and Shaanxi, with the values ranging between 6.44 and 7.76 g·kg-1. Similar to soil organic carbon, soil total nitrogen content also exhibited obvious differences in the 12 major apple producing provinces. Shandong apple orchard soil had the highest total nitrogen content (1.26 g·kg-1), followed by Beijing (1.23 g·kg-1). No significant difference was noted between these two regions, but their total nitrogen content was significantly higher than the other nine provinces, excluding Yunnan. The soil total nitrogen content for Xinjiang, Heilongjiang, Hebei, Henan, and Gansu was between 0.87 and 1.03 g·kg-1, which was significantly lower than that in Shandong and Beijing, but significantly higher than that in Liaoning, Shanxi, and Shaanxi. Six provinces exhibited apple orchard soil C/N ratio higher than 10, including Heilongjiang (15.42), Xinjiang (13.38), Ningxia (14.45), Liaoning (12.24), Yunnan (11.03), and Gansu (10.63). The soil C/N ratio was below 10 in the remaining six provinces, in which the highest was found in Shaanxi (9.47), followed by Beijing (8.98), Henan (7.99), and Shanxi (7.62), and the lowest was found in Hebei (6.80) and Shandong (6.05). Therefore, the improvement of soil organic carbon should be given more attention to increase the steady growth of soil C/N ratio.展开更多
Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,t...Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive.Therefore,a four-year (2015–2018) field experiment was conducted with four levels (i.e.,0,6,12and 18 Mg ha~(–1)) of straw returned as an interlayer.Compared with no straw interlayer (CK),straw addition increased SOC concentration by 14–32 and 11–57%in the 20–40 and 40–60 cm soil layers,respectively.The increases in soil TN concentration (8–22 and 6–34%in the 20–40 and 40–60 cm soil layers,respectively) were lower than that for SOC concentration,which led to increased soil C:N ratio in the 20–60 cm soil depth.Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm),which promoted uniform distributions of SOC and TN in the soil profile.Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield.Generally,compared with other treatments,the application of 12 Mg ha~(–1) straw had higher SOC,TN and C:N ratio,and lower soil stratification ratio in the2015–2017 period.The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years,and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils.展开更多
The oilseed cake, vetch, rapeseed straw, wheat straw and corn straw were buried in tobacco-planted soil. The decomposition rates, the variation of active organic C and N contents in the residues and the relationship b...The oilseed cake, vetch, rapeseed straw, wheat straw and corn straw were buried in tobacco-planted soil. The decomposition rates, the variation of active organic C and N contents in the residues and the relationship between active organic C and N contents and decomposition rate were investigated. The results showed the decomposition rates of different organic materials were all high in the early period and then low in the late period. Among the organic materials, the decomposition rates ranked as oilseed cake 〉 vetch 〉 wheat straw and rapeseed straw 〉 corn straw. The decomposition rate was positively related to total N content (P〈0.01), but was negatively related to the active organic C/N ratio (P〈0.01). However, there was no significant relationship between decomposition ratio and active organic C content. With the proceeding of decomposition, the active organic C content and the total N content in rapeseed straw, vetch, wheat straw and corn straw all trended to increase, but the active organic C/N ratio trended to decrease. However, the variation of active organic C content, total N content and active organic C/N ratio in oilseed cake was on the contrary.展开更多
This paper presents new geological and geochemical data from the Shuanghu area in northern Tibet, which recorded the Early Toarcian Oceanic Anoxic Event. The stratigraphic succession in the Shuanghu area consists most...This paper presents new geological and geochemical data from the Shuanghu area in northern Tibet, which recorded the Early Toarcian Oceanic Anoxic Event. The stratigraphic succession in the Shuanghu area consists mostly of grey to dark-colored alternating oil shales, marls and mudstones. Ammonite beds are found at the top of the Shuanghu oil shale section, which are principally of early Toarcian age, roughly within the Harplocearas falciferrum Zone. Therefore, the oil shale strata at Shuanghu can be correlated with early Toarcian black shales distributing extensively in the European epicontinental seas that contain the records of an Oceanic Anoxic Event. Sedimentary organic matter of laminated shale anomalously rich in organic carbon across the Shuanghu area is characterized by high organic carbon contents, ranging from 1.8% to 26.1%. The carbon isotope curve displays the δ 13C values of the kerogen (δ 13Ckerogen) fluctuating from –26.22 to –23.53‰ PDB with a positive excursion close to 2.17‰, which, albeit significantly smaller, may also have been associated with other Early Toarcian Oceanic Anoxic Events (OAEs) in Europe. The organic atomic C/N ratios range between 6 and 43, and the curve of C/N ratios is consistent with that of the δ 13Ckerogen values. The biological assemblage, characterized by scarcity of benthic organisms and bloom of calcareous nannofossils (coccoliths), reveals high biological productivity in the surface water and an unfavorable environment for the benthic fauna in the bottom water during the Oceanic Anoxic Event. On the basis of organic geochemistry and characteristics of the biological assemblage, this study suggests that the carbon-isotope excursion is caused by the changes of sea level and productivity, and that the black shale deposition, especially oil shales, is related to the bloom and high productivity of coccoliths.展开更多
Two parallel carbon-membrane aerated biofilm reactors were operated at well-defined conditions to investigate the effect of substrate COD/N ratios on the performance and microbial community structure of the bioreactor...Two parallel carbon-membrane aerated biofilm reactors were operated at well-defined conditions to investigate the effect of substrate COD/N ratios on the performance and microbial community structure of the bioreactor. Results showed that at substrate COD/N of 5, organic and nitrogen could be eliminated simultaneously, and COD removal degree, nitrification and denitrification efficiency reached 85%, 93% and 92%, respectively. With increasing substrate COD/N ratios, the specific oxygen utilization rates of nitrifying bacteria in biofilm were found to decrease, indicating that nitrifying population became less dominant. At substrate COD/N ratio of 6, excessive heterotrophs inhibited the activity of nitrifying bacteria greatly and thus led to poor nitrification process. With the help of fluorescence in situ hybridization (FISH), Nitrosomonas and Nitrosospira were identified as dominant ammonia-oxidizing bacteria in the biofilm at substrate COD/N of 0, whereas only Nitrosospira were detected in the biofilm at COD/N ratio of 5. Nitrospira were present as dominant nitrite-oxidizing bacteria in our study. Confocal laser scanning microscopy images revealed that at substrate COD/N ratio of 0 nitrifying bacteria existed throughout the biofilm and that at COD/N ratio of 5 they were mainly distributed in the inner layer of biofilm.展开更多
Many attempts have been made to estimate the soil organic carbon (SOC) storage under different land uses, especiallyfrom the conversion of forest land or grassland into cultivated field, but limited reports were found...Many attempts have been made to estimate the soil organic carbon (SOC) storage under different land uses, especiallyfrom the conversion of forest land or grassland into cultivated field, but limited reports were found on the estimation ofthis storage after cultivated field converted into woodland or grassland, especially in small scales. This study is aimed toinvestigate the dynamics of SOC concentration, its storage and carbon /nitrogen (C/N) ratio in an aquic brown soil at theShenyang Experimental Station of Ecology, Chinese Academy of Sciences under four land use patterns over 14 years. Thefour land use patterns were paddy field (PF), maize field (MF), fallow field (FF) and woodland (WL). In each pedon at 0-150cm depth, soil samples were collected from ten layers. The results showed that the profile distribution of SOC was differentunder different land uses, indicating the effect of land use on SOC. Soil organic carbon was significantly related with soiltotal N, and the correlation was slightly closer in nature ecosystems (with R2=0.990 and P<0.001 in both WL and FF, n=30)than in agroecosystems (with R2=0.976 and P<0.001 in PF, and R2=0.980 and P<0.001 in MF, n=30). The C/N ratio in theprofiles decreased generally with depth under the four land use patterns, and was comparatively higher in WL and lowerin PF. The C/N ratio of the FF was closer to that in the same soil depths of MF than to that of PF. Within 100 cm depth, theannual sequestration of SOC was 4.25, 2.87, and 4.48 t ha-1 more in WL than in PF, MF and FF, the annual SOC increasingrate being 6.15, 3.26, and 5.09 % higher, respectively. As a result, the SOC storage was significantly greater in WL than inany of the other three land use patterns, P=0.001, 0.008, and 0.008 as compared with PF, MF, and FF, respectively, whilethere was no significant difference among the other three land uses. It is suggested that woodland has the potential tomake a significant contribution to C storage and environmental quality.展开更多
This study presents an investigation of the scattering and backscattering properties of the particulates in three Chinese inland lakes(the Taihu Lake, the Chaohu Lake and the Dianchi Lake) based on in situ measurement...This study presents an investigation of the scattering and backscattering properties of the particulates in three Chinese inland lakes(the Taihu Lake, the Chaohu Lake and the Dianchi Lake) based on in situ measurements taken at 119 sites. We modeled the particulate scattering spectra using a wavelength-dependent power-law function, finding that the power-law exponents in the Taihu Lake and the Chaohu Lake differ from those in the Dianchi Lake but are similar to the values in the U.S. coastal waters. In contrast to the open ocean, the backscattering properties in the three lakes can not be determined only from chlorophyll-a concentration. The backscattering ratio spectra exhibit a wavelength dependence feature in all three lakes, generally decreasing with the increasing wavelength. Analysis results of the correlations between the backscattering ratio and the individual water quality parameters clearly show that there are distinctive relations among the three lakes, attributed primarily to different compositions of optically active materials in the three lakes. Analysis of the mass-specific scattering and backscattering coefficients shows that the coefficients at wavelength 532 nm in the Taihu Lake and Chaohu Lake are similar, but they are apparently different from those in the Dianchi Lake. Lastly, Model I multiple linear regressions were adopted to partition the mass-specific cross-sections for scattering and backscattering into organic and inorganic cross-sections to further interpret the scattering and backscattering properties. The relative contribution of organic and inorganic particulates to scattering and backscattering is clearly different among the three lakes. The scattering and backscattering properties of the particulates in the three inland lakes vary significantly based on our collected data. The results indicated that the existing semi-analytical water quality retrieval models of the Taihu Lake can not be applied perfectly to the Chaohu Lake and the Dianchi Lake.展开更多
In order to explore the fertilizing ways and dynamic changes of soil carbon and nitrogen in the main producing areas of tobacco in Guizhou,research was conducted to study the variations of dissolved organic carbon and...In order to explore the fertilizing ways and dynamic changes of soil carbon and nitrogen in the main producing areas of tobacco in Guizhou,research was conducted to study the variations of dissolved organic carbon and nitrogen,total organic carbon and nitrogen and their ratio of tobacco-topsoil in organic fertilization pattern and conventional cultivation pattern (No fertilizer as control) by pot experiment.The results were as follows:(1) The effects of different fertilization patterns on soil dissolved organic carbon and nitrogen and total organic carbon and nitrogen were significantly different.The content of DOC,DON,TOC and TON in tobaccotopsoil was decreased with the advancing of growth period in conventional fertilization pattern.In the conventional fertilization pattern,the accumulation of DOC and TOC was increased first and then decreased,and the accumulation of DON and TON was decreased first and then increased.(2) The TOC content at the different growing stage and DOC content at the middle and later stage of tobacco were significantly improved in organic fertilization patterns.The accumulation of DON and TON in the conventional fertilization pattern was significantly higher than those in the organic fertilizer pattern and control at the rosette stage and vigorous stage.In the harvest period,the content of DOC,DON,TOC and TON of tobacco-topsoil in the conventional fertilization and organic fertilization pattern was significantly higher than those in the control.(3)The DOC/DON ratio and the TOC/TiON ratio was increased gradually with the advancing of growth period in conventional fertilization pattern,but they were increased first and then decreased in the organic fertilization pattern and CK.The DOC/DON and TOC/TON ratio of tobacco-topsoil in different fertilization patterns was showed as Y J> CK> CG at the different growing stage.The experiment results revealed that:The organic fertilization pattern may improve significantly the accumulation of DOC,DON,TOC and TON of tobacco-topsoil at the middle and later stage and the DOC/DON and TOC/TON ratio at the different growth stage.It contributed to the continuous and balanced supply of nutrients at the middle and later stage of tobacco and the soil fertility.展开更多
Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N d...Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0–10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana...展开更多
Utilization of organic nitrogen (N) is an important aspect of plant N assimilation and has potential application in sustainable agriculture. The aim of this study was to investigate the plant growth, C and N accumul...Utilization of organic nitrogen (N) is an important aspect of plant N assimilation and has potential application in sustainable agriculture. The aim of this study was to investigate the plant growth, C and N accumulation in leaves and roots of tomato seedlings in response to inorganic (NH4^+-N, NO3^-N) and organic nitrogen (Gly-N). Different forms of nitrogen (NH4^+-N, NO3^--N, Gly-N) were supplied to two tomato cultivars (Shenfen 918 and Huying 932) using a hydroponics system. The plant dry biomass, chlorophyll content, root activity, total carbon and nitrogen content in roots and leaves, and total N absorption, etc. were assayed during the cultivation. Our results showed that no significant differences in plant height, dry biomass, and total N content were found within the first 16 d among three treatments; however, significant differences in treatments on 24 d and 32 d were observed, and the order was NO3^--N 〉 Gly-N 〉 NH4^+-N. Significant differences were also observed between the two tomato cultivars. Chlorophyll contents in the two cultivars were significantly increased by the Gly-N treatment, and root activity showed a significant decrease in NHa^+-N treatment. Tomato leaf total carbon content was slightly affected by different N forms; however, total carbon in root and total nitrogen in root and leaf were promoted significantly by inorganic and organic N. Among the applied N forms, the increasing effects of the NH4^+-N treatment were larger than that of the Gly-N. In a word, different N resources resulted in different physiological effects in tomatoes. Organic nitrogen (e.g., Gly-N) can be a proper resource of plant N nutrition. Tomatoes of different genotypes had different responses under organic nitrogen (e.g., Gly-N) supplies.展开更多
To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C(SOC) and total N(TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Hu...To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C(SOC) and total N(TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Huang-HuaiHai Plain during 1990–2019. The experimental treatments consisted of five fertilizer regimes: no fertilizer(control), chemical fertilizer only(NPK), chemical fertilizer with straw(NPKS), chemical fertilizer with manure(NPKM), and 1.5 times the rate of NPKM(1.5NPKM). The NPK, NPKS, and NPKM treatments had equal N inputs. The crop yields were measured over the whole experimental duration. Soil samples were collected from the topsoil(0–10 and 10–20 cm) and subsoil(20–40 cm) layers for assessing soil aggregates and taking SOC and TN measurements. Compared with the NPK treatment, the SOC and TN contents increased significantly in both the topsoil(24.1–44.4% for SOC and 22.8–47.7% for TN) and subsoil layers(22.0–47.9% for SOC and 19.8–41.8% for TN) for the organically amended treatments(NPKS, NPKM and 1.5NPKM) after 30 years, while no significant differences were found for the average annual crop yields over the 30 years of the experiment. The 0–10 cm layer of the NPKS treatment and the 20–40 cm layer of the NPKM treatment had significantly higher macroaggregate fraction mass proportions(19.8 and 27.0%) than the NPK treatment. However, the 0–10 and 20–40 cm layers of the 1.5NPKM treatment had significantly lower macroaggregate fraction mass proportions(–19.2 and –29.1%) than the control. The analysis showed that the higher SOC and TN in the soil of organically amended treatments compared to the NPK treatment were related to the increases in SOC and TN protected in the stable fractions(i.e., free microaggregates and microaggregates within macroaggregates), in which the contributions of the stable fractions were 81.1–91.7% of the increase in SOC and 83.3–94.0% of the increase in TN, respectively. The relationships between average C inputs and both stable SOC and TN stocks were significantly positive with R2 values of 0.74 and 0.72(P<0.01) for the whole 40 cm soil profile, which indicates the importance of N for soil C storage. The results of our study provide key evidence that long-term combined organic and chemical nitrogen fertilization, while maintaining reasonable total N inputs, benefited soil C and N storage in both the topsoil and subsoil layers.展开更多
Cover crop system has shown a potential approach to improving carbon sequestration and environmental quality. Six of each winter and summer cover crops were subsequently grown in two soils, Krome gravelly loam soil (K...Cover crop system has shown a potential approach to improving carbon sequestration and environmental quality. Six of each winter and summer cover crops were subsequently grown in two soils, Krome gravelly loam soil (KGL), and Quincy fine sandy soil (QFS), in phytotrons at 3 temperatures (10/20, 15/25, 25/30oC for winter/summer cover crops) to investigate their contributions for carbon (C) sequestration. Among winter cover crops, the highest and the lowest amounts of C accumulated were by bellbean (Vicia faba L.), 597 g/m2 and white clover (Trifolium repens), 149 g/m2, respectively, in the QFS soil. Among summer cover crops, sunn hemp (Crotalaria juncea L.) accumulated the largest quantity of C (481 g/m2), while that by castorbean (Ricinus communis) was 102 g/m2 at 30oC in the KGL soil. The mean net C remained in the residues following the 127 d decomposition were 187 g/m2 of C (73% of the total) and 91 g/m2 (52% of the total) for the winter and summer cover crops, respectively. Following a whole cycle of winter and summer cover crops grown, the mean soil organic C (SOC) increased by 13.8 and 39.1% in the KGL and QFS soil, respectively, compared to the respective soils before. The results suggest that triticale, ryegrass, and bellbean are the promising winter cover crops in the QFS soil, while sunn hemp, velvetbean (Mucuna pruriens), and sorghum sudangrass (Sorghum bicolor ×S. bicolor) are recommended summer cover crops for both soils under favorable temperatures.展开更多
In order to understand origin and fate of particulate organic matter,the isotopic composition(δ^(13)C andδ^(15)N),total or-ganic carbon content,total nitrogen content,and C/N ratios were measured for suspended parti...In order to understand origin and fate of particulate organic matter,the isotopic composition(δ^(13)C andδ^(15)N),total or-ganic carbon content,total nitrogen content,and C/N ratios were measured for suspended particulate organic matter(POM)collected from the northern South China Sea(NSCS)during summer.Our study revealed thatδ^(13)C generally decreased from land to sea,and elevatedδ^(13)C occurred at the nearshore stations,suggesting that POC was mainly contributed from the eutrophic level and microbial activity.Moreover,the distribution ofδ^(15)N values were complicated,and heterotrophic modification was responsible for higherδ^(15)N in the nearshore stations.These distribution patterns ofδ^(13)C andδ^(15)N in the nearshore stations may be associated with the intensifi-cation of human activity in the coast.Based on the Stable Isotope Analysis in R model,65%of POM was contributed by marine or-ganic matter in the NSCS,20%by terrestrial inputs,and 15%by freshwater algae.展开更多
Tropical waters show different regional aspects due to specificities in their nutrient biogeochemical cycles, which can affect the carbon system and influence their regional role as sinks or sources of CO<sub>2&...Tropical waters show different regional aspects due to specificities in their nutrient biogeochemical cycles, which can affect the carbon system and influence their regional role as sinks or sources of CO<sub>2</sub>. This study was performed on particular tropical areas that present a different seasonal behaviour related to the carbon cycle observed in the late rainy season (July 2013). Understanding the CO<sub>2</sub> drawdown and outgassing potential in these areas is needed to call attention to more long-term monitoring efforts and protect understudied tropical coastal systems more efficiently. This study is focused on nutrient values, hydrological data, biogeochemical carbon behaviour linked to the carbonate system and includes estimates of CO<sub>2</sub> fluxes in three contrasting areas off the northeastern Brazilian shelf: 1) an urbanised estuary (Recife-REC), 2) a coastal Island (Itamaracá-ITA) and 3) an oceanic archipelago (Fernando de Noronha-FN). In general, REC acted as a source, while ITA and FN as carbon sinks. In ITA, despite the high DIC and Total Alkalinity observed (mean ~2360 μmol·kg<sup>-1</sup>), the sink is associated with an effective cascading of atmospheric CO<sub>2</sub> associated with turbulent shallow waters coupled with biogenic removal of and precipitation of CaCO<sub>3</sub> by coralline algae. FN acted as a sink, linked to minor decreases in Total Alkalinity (mean~2295 μmol·kg<sup>-1</sup>) influenced by ammonium-based primary production, nitrogen fixation and sporadic entrainment of nutrient rich waters in the upper thermocline. More studies in different western tropical Atlantic coastal systems can improve the knowledge of tropical shelf seas and their contribution to the ocean carbon budget under specific regional trophic regimes.展开更多
A potassium organic-inorganic hybrid complex {H2[K(PMo12O40)(CH3CN)3]- (dpdo)2(H2O)}n 1 (dpdo = 4,4'-bipyridine-N,N'-dioxide) with special channels for the chain-like assembly of decorated Keggin-type anio...A potassium organic-inorganic hybrid complex {H2[K(PMo12O40)(CH3CN)3]- (dpdo)2(H2O)}n 1 (dpdo = 4,4'-bipyridine-N,N'-dioxide) with special channels for the chain-like assembly of decorated Keggin-type anions was synthesized and structurally characterized. The crystal structure was determined by single-crystal X-ray diffraction. The crystal is of orthorhombic, space group Cmcm with a = 20.5328(17), b = 16.8877(14), c = 16,1454(14) A, V = 5598.4(8) A^3, Z = 4, C26H29N7O45KMo12P, Mr= 2380.91, Dc = 2.825 g/cm^3,μ = 2.813 mm^-1, F(000) = 4528, the final R = 0.0324 and wR = 0.0880 for 2577 observed reflections with I 〉 2σ(I). Compound 1 exhibits a 3D network structure with large channels hosting decorated poly-anion chains as guests.展开更多
The photoconductive characteristic of the inorganic/organic hybridized polymer system is reported, in which a novel bi-functional photorefractive (PR) poly(N-vinyl)-3-[p-nitrophenylazo]carbazole (PVNPAK) serves as a p...The photoconductive characteristic of the inorganic/organic hybridized polymer system is reported, in which a novel bi-functional photorefractive (PR) poly(N-vinyl)-3-[p-nitrophenylazo]carbazole (PVNPAK) serves as a polymeric charge-transporting and second-order nonliner optical matrix and quantum dots composed of surface passivated cadmium sulfide serve as a charge-generation sensitizer. The hybrid PVNPAK/CdS-nanoparticles polymer composites with different mass ratio of CdS to PVNPAK were prepared. The generation of photocurrent on illumination and photoconductive properties of the PVNPAK/CdS-nanoparticles polymer composites were studied. The results show that the addition of CdS nanoparticle as a photosensitizer can enhance the photoconductivity of the PVNPAK significantly because of the properties of the high quantum efficiency of photosensitization and high charge transport to conducting polymer.展开更多
Endogenous hormones play an important role in the growth and development of roots. The objective of this research was to study the effect of four types of N fertilizers on the root growth of strawberry (Fragaria anana...Endogenous hormones play an important role in the growth and development of roots. The objective of this research was to study the effect of four types of N fertilizers on the root growth of strawberry (Fragaria ananassa Duchesne) and the endogenous enzymes of indole-3-acetic acid (IAA), abscisic acid (ABA), and isopentenyl adenosine (iPA) in its roots and leaves using enzyme-linked immunosorbent assay. Application of all types of N fertilizers significantly depressed (P ≤ 0.05) root growth at 20 d after transplanting. Application of organic-inorganic fertilizer (OIF) as basal fertilizer had a significant negative effect (P ≤ 0.05) on root growth. The application of OIF and urea lowered the lateral root frequency in strawberry plants at 60 d (P ≤ 0.05) compared with the application of two organic fertilizers (OFA and OFB) and the control (CK). With the fertilizer treatments, there were the same concentrations of IAA and ABA in both roots and leaves at the initial growth stage (20 d), lower levels of IAA and ABA at the later stage (60 d), and higher iPA levels at all seedling stages as compared to those of CK. Thus, changes in the concentrations of endogenous phytohormones in strawberry plants could be responsible for the morphological changes of roots due to fertilization.展开更多
On the basis of multi-proxy analysis on TOC, TN, C/N, organic δ^13C and grain size, sediment record from Qinghai Lake provides evidences of stepwise-pattemed climatic change since 16 ka BE Results show that Qinghai L...On the basis of multi-proxy analysis on TOC, TN, C/N, organic δ^13C and grain size, sediment record from Qinghai Lake provides evidences of stepwise-pattemed climatic change since 16 ka BE Results show that Qinghai Lake underwent six environmental stages. From 16.2 to 14.3 ka BP and from 4.0 to 2.1 ka BP, the organic δ^13C value was controlled by the concentration of atmospheric CO2. Relative higher organic δ^13C values occurred between 14.3 to 10.4 ka BP indicative of water hardness decrease resulted from melting ice water, corresponding to two intervals of C/N peak values to the Boling and AIlerod warm periods in Europe respectively. From 10.4 ka BP, Qinghai Lake entered the Holocene and the climate was warm and a little dry. The Megathermal appeared at about 6.7 ka BP when the vegetation around the lake transformed into a forest. Between 6.3 ka BP and 4.0 ka BP, the temperature decreased and δ^13C value was controlled by the expansion of C3 plants and the retreat of C4 plants in river catchment. Since 4.0 ka BP, the climate gradually became cold and dry. From 2.1 ka BP, the cold-dry climate and human activity resulted in an abrupt increase in C/N with deceased δ^13C value; meanwhile, many coarse grains appeared in sediments.展开更多
In?the Canadian Prairies, many soils on organic farms are low in available P, and the only alternative is to use external sources to prevent P nutrient deficiency on these soils. A 3-year (2012 to 2014) field experime...In?the Canadian Prairies, many soils on organic farms are low in available P, and the only alternative is to use external sources to prevent P nutrient deficiency on these soils. A 3-year (2012 to 2014) field experiment was established in spring 2012 on a P-deficient soil near Kelvington, Saskatchewan, Canada, to determine the potential of organic amendments (alfalfa pellets, compost manure, thin stillage and distiller grain dry of wheat), inorganic amendments (rock phosphate granular, rock phosphate fine, wood ash and bone meal ash) and microbial inoculants/products (JumpStart®and MYKE®PRO), applied alone or in a combination with N and/or P commercial fertilizers, in preventing P deficiency and increasing seed yield, N and P uptake of barley. Compared to unfertilized control, N only treatment did not result in any significant increase in seed yield, while application of P alone increased seed yield significantly but to a lesser degree than when both N and P fertilizers were applied together in all 3 years. Rock phosphate did not result in any seed yield benefit, even when applied along with N fertilizer. Wood ash fine increased seed yield of barley significantly only in the presence of N fertilizer, with highest seed yield in the presence of both N + P fertilizers. Seed yield of barley increased moderately with alfalfa pellets, significantly with compost manure, and considerably with distiller grain dry of wheat, but highest seed yield was obtained from thin stillage, which was essentially similar to that obtained from the N + P fertilizer combination. There was no yield benefit from JumpStart or MykePro in any year and only slight benefit from bone meal ash in 2013. The addition of N fertilizer to MykePro or bone meal ash treatments increased seed yield, but highest yield was obtained when both N and P fertilizers were added, suggesting a lack of available P for optimum seed yield. With few exceptions, the response trends of total N and P uptake in seed + straw to the amendments studied were generally similar to those of seed yield. In conclusion, the organic amendment “thin stillage” provided balanced nutrition and produced yield and nutrient uptake of barley similar to balanced N + P fertilizer treatment, and it was closely followed by “distiller grain dry of wheat”, with moderate benefit from compost manure and some benefit from alfalfa pellets. In this extremely P-deficient soil, rock phosphate was not found effective in preventing P deficiency in barley, while wood ash and bone meal ash provided moderate increase in barley yield, with little yield benefit from JumpStart and MykePro, when other nutrients were not limiting in the soil.展开更多
Traditionally, soil-testing laboratories have used a variety of methods to determine soil organic matter, yet they lack a practical method to predict potential N mineralization/immobilization from soil organic matter....Traditionally, soil-testing laboratories have used a variety of methods to determine soil organic matter, yet they lack a practical method to predict potential N mineralization/immobilization from soil organic matter. Soils with high micro-bial activity may experience N immobilization (or reduced net N mineralization), and this issue remains unresolved in how to predict these conditions of net mineralization or net immobilization. Prediction may become possible with the use of a more sensitive method to determine soil C:N ratios stemming from the water-extractable C and N pools that can be readily adapted by both commercial and university soil testing labs. Soil microbial activity is highly related to soil organic C and N, as well as to water-extractable organic C (WEOC) and water-extractable organic N (WEON). The relationship between soil respiration and WEOC and WEON is stronger than between respiration and soil organic C (SOC) and total organic N (TON). We explored the relationship between soil organic C:N and water-extractable organic C:N, as well as their relationship to soil microbial activity as measured by the flush of CO2 following rewetting of dried soil. In 50 different soils, the relationship between soil microbial activity and water-extractable organic C:N was much stronger than for soil organic C: N. We concluded that the water-extractable organic C:N was a more sensitive measurement of the soil substrate which drives soil microbial activity. We also suggest that a water-extractable organic C:N level > 20 be used as a practical threshold to separate those soils that may have immobilized N with high microbial activity.展开更多
文摘Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carbon and nitrogen nutrition balance of soils. We studied the characteristics of soil organic carbon and total nitrogen by investigating a large number of apple orchards in major apple production areas in China. High apple orchard soil organic carbon content was observed in the provinces of Heilongjiang, Xinjiang, and Yunnan, whereas low content was found in the provinces of Shandong, Henan, Hebei, and Shaanxi, with the values ranging between 6.44 and 7.76 g·kg-1. Similar to soil organic carbon, soil total nitrogen content also exhibited obvious differences in the 12 major apple producing provinces. Shandong apple orchard soil had the highest total nitrogen content (1.26 g·kg-1), followed by Beijing (1.23 g·kg-1). No significant difference was noted between these two regions, but their total nitrogen content was significantly higher than the other nine provinces, excluding Yunnan. The soil total nitrogen content for Xinjiang, Heilongjiang, Hebei, Henan, and Gansu was between 0.87 and 1.03 g·kg-1, which was significantly lower than that in Shandong and Beijing, but significantly higher than that in Liaoning, Shanxi, and Shaanxi. Six provinces exhibited apple orchard soil C/N ratio higher than 10, including Heilongjiang (15.42), Xinjiang (13.38), Ningxia (14.45), Liaoning (12.24), Yunnan (11.03), and Gansu (10.63). The soil C/N ratio was below 10 in the remaining six provinces, in which the highest was found in Shaanxi (9.47), followed by Beijing (8.98), Henan (7.99), and Shanxi (7.62), and the lowest was found in Hebei (6.80) and Shandong (6.05). Therefore, the improvement of soil organic carbon should be given more attention to increase the steady growth of soil C/N ratio.
基金funded by the National Natural Science Foundation of China (31871584)the Agricultural Science and Technology Innovation Program, Chinese Academy of Agricultural Sciences (CAAS-ZDRW202201)+2 种基金the Fundamental Research Funds for Central Non-profit Scientific Institution, China (1610132020011)the “Open the list” in charge of the Science and Technology Project of Ordos, Center for Agro-pastoral Ecology and Resource Conservation of Ordos City, Inner Mongolia, China (JBGS2021-001)the Inner Mongolia Autonomous Region Research Project (2021EEDSCXSFQZD011)。
文摘Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive.Therefore,a four-year (2015–2018) field experiment was conducted with four levels (i.e.,0,6,12and 18 Mg ha~(–1)) of straw returned as an interlayer.Compared with no straw interlayer (CK),straw addition increased SOC concentration by 14–32 and 11–57%in the 20–40 and 40–60 cm soil layers,respectively.The increases in soil TN concentration (8–22 and 6–34%in the 20–40 and 40–60 cm soil layers,respectively) were lower than that for SOC concentration,which led to increased soil C:N ratio in the 20–60 cm soil depth.Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm),which promoted uniform distributions of SOC and TN in the soil profile.Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield.Generally,compared with other treatments,the application of 12 Mg ha~(–1) straw had higher SOC,TN and C:N ratio,and lower soil stratification ratio in the2015–2017 period.The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years,and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils.
基金Supported by National Key Technology Research and Development Program(2012BAD40B02Yunnan Provincial Tobacco Company Plan Project(2012YN48)~~
文摘The oilseed cake, vetch, rapeseed straw, wheat straw and corn straw were buried in tobacco-planted soil. The decomposition rates, the variation of active organic C and N contents in the residues and the relationship between active organic C and N contents and decomposition rate were investigated. The results showed the decomposition rates of different organic materials were all high in the early period and then low in the late period. Among the organic materials, the decomposition rates ranked as oilseed cake 〉 vetch 〉 wheat straw and rapeseed straw 〉 corn straw. The decomposition rate was positively related to total N content (P〈0.01), but was negatively related to the active organic C/N ratio (P〈0.01). However, there was no significant relationship between decomposition ratio and active organic C content. With the proceeding of decomposition, the active organic C content and the total N content in rapeseed straw, vetch, wheat straw and corn straw all trended to increase, but the active organic C/N ratio trended to decrease. However, the variation of active organic C content, total N content and active organic C/N ratio in oilseed cake was on the contrary.
文摘This paper presents new geological and geochemical data from the Shuanghu area in northern Tibet, which recorded the Early Toarcian Oceanic Anoxic Event. The stratigraphic succession in the Shuanghu area consists mostly of grey to dark-colored alternating oil shales, marls and mudstones. Ammonite beds are found at the top of the Shuanghu oil shale section, which are principally of early Toarcian age, roughly within the Harplocearas falciferrum Zone. Therefore, the oil shale strata at Shuanghu can be correlated with early Toarcian black shales distributing extensively in the European epicontinental seas that contain the records of an Oceanic Anoxic Event. Sedimentary organic matter of laminated shale anomalously rich in organic carbon across the Shuanghu area is characterized by high organic carbon contents, ranging from 1.8% to 26.1%. The carbon isotope curve displays the δ 13C values of the kerogen (δ 13Ckerogen) fluctuating from –26.22 to –23.53‰ PDB with a positive excursion close to 2.17‰, which, albeit significantly smaller, may also have been associated with other Early Toarcian Oceanic Anoxic Events (OAEs) in Europe. The organic atomic C/N ratios range between 6 and 43, and the curve of C/N ratios is consistent with that of the δ 13Ckerogen values. The biological assemblage, characterized by scarcity of benthic organisms and bloom of calcareous nannofossils (coccoliths), reveals high biological productivity in the surface water and an unfavorable environment for the benthic fauna in the bottom water during the Oceanic Anoxic Event. On the basis of organic geochemistry and characteristics of the biological assemblage, this study suggests that the carbon-isotope excursion is caused by the changes of sea level and productivity, and that the black shale deposition, especially oil shales, is related to the bloom and high productivity of coccoliths.
基金supported by the National Science Council of China (No.50578023)
文摘Two parallel carbon-membrane aerated biofilm reactors were operated at well-defined conditions to investigate the effect of substrate COD/N ratios on the performance and microbial community structure of the bioreactor. Results showed that at substrate COD/N of 5, organic and nitrogen could be eliminated simultaneously, and COD removal degree, nitrification and denitrification efficiency reached 85%, 93% and 92%, respectively. With increasing substrate COD/N ratios, the specific oxygen utilization rates of nitrifying bacteria in biofilm were found to decrease, indicating that nitrifying population became less dominant. At substrate COD/N ratio of 6, excessive heterotrophs inhibited the activity of nitrifying bacteria greatly and thus led to poor nitrification process. With the help of fluorescence in situ hybridization (FISH), Nitrosomonas and Nitrosospira were identified as dominant ammonia-oxidizing bacteria in the biofilm at substrate COD/N of 0, whereas only Nitrosospira were detected in the biofilm at COD/N ratio of 5. Nitrospira were present as dominant nitrite-oxidizing bacteria in our study. Confocal laser scanning microscopy images revealed that at substrate COD/N ratio of 0 nitrifying bacteria existed throughout the biofilm and that at COD/N ratio of 5 they were mainly distributed in the inner layer of biofilm.
基金This work was supported by the grants of the Know-ledge Innovation Program of the Chinese Academy of Sciences(KZCX2-413)the fund of Shenyang Experimental Station of Ecology,Chinese Academy of Sciences(SYZ0204).
文摘Many attempts have been made to estimate the soil organic carbon (SOC) storage under different land uses, especiallyfrom the conversion of forest land or grassland into cultivated field, but limited reports were found on the estimation ofthis storage after cultivated field converted into woodland or grassland, especially in small scales. This study is aimed toinvestigate the dynamics of SOC concentration, its storage and carbon /nitrogen (C/N) ratio in an aquic brown soil at theShenyang Experimental Station of Ecology, Chinese Academy of Sciences under four land use patterns over 14 years. Thefour land use patterns were paddy field (PF), maize field (MF), fallow field (FF) and woodland (WL). In each pedon at 0-150cm depth, soil samples were collected from ten layers. The results showed that the profile distribution of SOC was differentunder different land uses, indicating the effect of land use on SOC. Soil organic carbon was significantly related with soiltotal N, and the correlation was slightly closer in nature ecosystems (with R2=0.990 and P<0.001 in both WL and FF, n=30)than in agroecosystems (with R2=0.976 and P<0.001 in PF, and R2=0.980 and P<0.001 in MF, n=30). The C/N ratio in theprofiles decreased generally with depth under the four land use patterns, and was comparatively higher in WL and lowerin PF. The C/N ratio of the FF was closer to that in the same soil depths of MF than to that of PF. Within 100 cm depth, theannual sequestration of SOC was 4.25, 2.87, and 4.48 t ha-1 more in WL than in PF, MF and FF, the annual SOC increasingrate being 6.15, 3.26, and 5.09 % higher, respectively. As a result, the SOC storage was significantly greater in WL than inany of the other three land use patterns, P=0.001, 0.008, and 0.008 as compared with PF, MF, and FF, respectively, whilethere was no significant difference among the other three land uses. It is suggested that woodland has the potential tomake a significant contribution to C storage and environmental quality.
基金Under the auspices of National Natural Science Foundation of China(No.41171269,41101378)
文摘This study presents an investigation of the scattering and backscattering properties of the particulates in three Chinese inland lakes(the Taihu Lake, the Chaohu Lake and the Dianchi Lake) based on in situ measurements taken at 119 sites. We modeled the particulate scattering spectra using a wavelength-dependent power-law function, finding that the power-law exponents in the Taihu Lake and the Chaohu Lake differ from those in the Dianchi Lake but are similar to the values in the U.S. coastal waters. In contrast to the open ocean, the backscattering properties in the three lakes can not be determined only from chlorophyll-a concentration. The backscattering ratio spectra exhibit a wavelength dependence feature in all three lakes, generally decreasing with the increasing wavelength. Analysis results of the correlations between the backscattering ratio and the individual water quality parameters clearly show that there are distinctive relations among the three lakes, attributed primarily to different compositions of optically active materials in the three lakes. Analysis of the mass-specific scattering and backscattering coefficients shows that the coefficients at wavelength 532 nm in the Taihu Lake and Chaohu Lake are similar, but they are apparently different from those in the Dianchi Lake. Lastly, Model I multiple linear regressions were adopted to partition the mass-specific cross-sections for scattering and backscattering into organic and inorganic cross-sections to further interpret the scattering and backscattering properties. The relative contribution of organic and inorganic particulates to scattering and backscattering is clearly different among the three lakes. The scattering and backscattering properties of the particulates in the three inland lakes vary significantly based on our collected data. The results indicated that the existing semi-analytical water quality retrieval models of the Taihu Lake can not be applied perfectly to the Chaohu Lake and the Dianchi Lake.
基金Supported by The General Program of National Natural Science Foundation of China(312771673)Programs for Science and Technology Development of Tobacco Monopoly Bureau in Guizhou Province(20121126)~~
文摘In order to explore the fertilizing ways and dynamic changes of soil carbon and nitrogen in the main producing areas of tobacco in Guizhou,research was conducted to study the variations of dissolved organic carbon and nitrogen,total organic carbon and nitrogen and their ratio of tobacco-topsoil in organic fertilization pattern and conventional cultivation pattern (No fertilizer as control) by pot experiment.The results were as follows:(1) The effects of different fertilization patterns on soil dissolved organic carbon and nitrogen and total organic carbon and nitrogen were significantly different.The content of DOC,DON,TOC and TON in tobaccotopsoil was decreased with the advancing of growth period in conventional fertilization pattern.In the conventional fertilization pattern,the accumulation of DOC and TOC was increased first and then decreased,and the accumulation of DON and TON was decreased first and then increased.(2) The TOC content at the different growing stage and DOC content at the middle and later stage of tobacco were significantly improved in organic fertilization patterns.The accumulation of DON and TON in the conventional fertilization pattern was significantly higher than those in the organic fertilizer pattern and control at the rosette stage and vigorous stage.In the harvest period,the content of DOC,DON,TOC and TON of tobacco-topsoil in the conventional fertilization and organic fertilization pattern was significantly higher than those in the control.(3)The DOC/DON ratio and the TOC/TiON ratio was increased gradually with the advancing of growth period in conventional fertilization pattern,but they were increased first and then decreased in the organic fertilization pattern and CK.The DOC/DON and TOC/TON ratio of tobacco-topsoil in different fertilization patterns was showed as Y J> CK> CG at the different growing stage.The experiment results revealed that:The organic fertilization pattern may improve significantly the accumulation of DOC,DON,TOC and TON of tobacco-topsoil at the middle and later stage and the DOC/DON and TOC/TON ratio at the different growth stage.It contributed to the continuous and balanced supply of nutrients at the middle and later stage of tobacco and the soil fertility.
基金the National Natural Science Foundation of China (No. 30725006, 40730102)the Chinese Ecological Research Net
文摘Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0–10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana...
基金funded by the National High Technol-ogy Research and Development Program of China (863 Program,2006AA10Z221)China Postdoctoral Science Foundation (2005038436)+1 种基金Shanghai Leading Academic Discipline Project (B209)National Key Technologies R&D Program of China during the 11th Five-Year Plan period (2008BADA7B00 2008BADA7B01)
文摘Utilization of organic nitrogen (N) is an important aspect of plant N assimilation and has potential application in sustainable agriculture. The aim of this study was to investigate the plant growth, C and N accumulation in leaves and roots of tomato seedlings in response to inorganic (NH4^+-N, NO3^-N) and organic nitrogen (Gly-N). Different forms of nitrogen (NH4^+-N, NO3^--N, Gly-N) were supplied to two tomato cultivars (Shenfen 918 and Huying 932) using a hydroponics system. The plant dry biomass, chlorophyll content, root activity, total carbon and nitrogen content in roots and leaves, and total N absorption, etc. were assayed during the cultivation. Our results showed that no significant differences in plant height, dry biomass, and total N content were found within the first 16 d among three treatments; however, significant differences in treatments on 24 d and 32 d were observed, and the order was NO3^--N 〉 Gly-N 〉 NH4^+-N. Significant differences were also observed between the two tomato cultivars. Chlorophyll contents in the two cultivars were significantly increased by the Gly-N treatment, and root activity showed a significant decrease in NHa^+-N treatment. Tomato leaf total carbon content was slightly affected by different N forms; however, total carbon in root and total nitrogen in root and leaf were promoted significantly by inorganic and organic N. Among the applied N forms, the increasing effects of the NH4^+-N treatment were larger than that of the Gly-N. In a word, different N resources resulted in different physiological effects in tomatoes. Organic nitrogen (e.g., Gly-N) can be a proper resource of plant N nutrition. Tomatoes of different genotypes had different responses under organic nitrogen (e.g., Gly-N) supplies.
基金supported by the Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences (CAAS-CSAL-202302 and GY2023-12-7)the Fundamental Research Funds for Central Non-Profit Scientific Institutions, China (1610132019014)the National Key Research and Development Program of China (2016YFD0200101 and 2018YFD0200804)。
文摘To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C(SOC) and total N(TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Huang-HuaiHai Plain during 1990–2019. The experimental treatments consisted of five fertilizer regimes: no fertilizer(control), chemical fertilizer only(NPK), chemical fertilizer with straw(NPKS), chemical fertilizer with manure(NPKM), and 1.5 times the rate of NPKM(1.5NPKM). The NPK, NPKS, and NPKM treatments had equal N inputs. The crop yields were measured over the whole experimental duration. Soil samples were collected from the topsoil(0–10 and 10–20 cm) and subsoil(20–40 cm) layers for assessing soil aggregates and taking SOC and TN measurements. Compared with the NPK treatment, the SOC and TN contents increased significantly in both the topsoil(24.1–44.4% for SOC and 22.8–47.7% for TN) and subsoil layers(22.0–47.9% for SOC and 19.8–41.8% for TN) for the organically amended treatments(NPKS, NPKM and 1.5NPKM) after 30 years, while no significant differences were found for the average annual crop yields over the 30 years of the experiment. The 0–10 cm layer of the NPKS treatment and the 20–40 cm layer of the NPKM treatment had significantly higher macroaggregate fraction mass proportions(19.8 and 27.0%) than the NPK treatment. However, the 0–10 and 20–40 cm layers of the 1.5NPKM treatment had significantly lower macroaggregate fraction mass proportions(–19.2 and –29.1%) than the control. The analysis showed that the higher SOC and TN in the soil of organically amended treatments compared to the NPK treatment were related to the increases in SOC and TN protected in the stable fractions(i.e., free microaggregates and microaggregates within macroaggregates), in which the contributions of the stable fractions were 81.1–91.7% of the increase in SOC and 83.3–94.0% of the increase in TN, respectively. The relationships between average C inputs and both stable SOC and TN stocks were significantly positive with R2 values of 0.74 and 0.72(P<0.01) for the whole 40 cm soil profile, which indicates the importance of N for soil C storage. The results of our study provide key evidence that long-term combined organic and chemical nitrogen fertilization, while maintaining reasonable total N inputs, benefited soil C and N storage in both the topsoil and subsoil layers.
文摘Cover crop system has shown a potential approach to improving carbon sequestration and environmental quality. Six of each winter and summer cover crops were subsequently grown in two soils, Krome gravelly loam soil (KGL), and Quincy fine sandy soil (QFS), in phytotrons at 3 temperatures (10/20, 15/25, 25/30oC for winter/summer cover crops) to investigate their contributions for carbon (C) sequestration. Among winter cover crops, the highest and the lowest amounts of C accumulated were by bellbean (Vicia faba L.), 597 g/m2 and white clover (Trifolium repens), 149 g/m2, respectively, in the QFS soil. Among summer cover crops, sunn hemp (Crotalaria juncea L.) accumulated the largest quantity of C (481 g/m2), while that by castorbean (Ricinus communis) was 102 g/m2 at 30oC in the KGL soil. The mean net C remained in the residues following the 127 d decomposition were 187 g/m2 of C (73% of the total) and 91 g/m2 (52% of the total) for the winter and summer cover crops, respectively. Following a whole cycle of winter and summer cover crops grown, the mean soil organic C (SOC) increased by 13.8 and 39.1% in the KGL and QFS soil, respectively, compared to the respective soils before. The results suggest that triticale, ryegrass, and bellbean are the promising winter cover crops in the QFS soil, while sunn hemp, velvetbean (Mucuna pruriens), and sorghum sudangrass (Sorghum bicolor ×S. bicolor) are recommended summer cover crops for both soils under favorable temperatures.
基金This work was supported by the National Natural Science Foundation of China(Nos.U1901213,41466010,41676008)the China National Key Research and Development Plan Project(No.2016YFC1401403)+3 种基金the Guangdong Natural Science Foundation of China(Nos.2016 A0303120042020A1515010500)the Project of Enhancing School with Innovation of Guangdong Ocean University(Nos.GDOU2016050260,230419097)the Marine Science Research Team Project of Guangdong Ocean University(No.002026002004).
文摘In order to understand origin and fate of particulate organic matter,the isotopic composition(δ^(13)C andδ^(15)N),total or-ganic carbon content,total nitrogen content,and C/N ratios were measured for suspended particulate organic matter(POM)collected from the northern South China Sea(NSCS)during summer.Our study revealed thatδ^(13)C generally decreased from land to sea,and elevatedδ^(13)C occurred at the nearshore stations,suggesting that POC was mainly contributed from the eutrophic level and microbial activity.Moreover,the distribution ofδ^(15)N values were complicated,and heterotrophic modification was responsible for higherδ^(15)N in the nearshore stations.These distribution patterns ofδ^(13)C andδ^(15)N in the nearshore stations may be associated with the intensifi-cation of human activity in the coast.Based on the Stable Isotope Analysis in R model,65%of POM was contributed by marine or-ganic matter in the NSCS,20%by terrestrial inputs,and 15%by freshwater algae.
文摘Tropical waters show different regional aspects due to specificities in their nutrient biogeochemical cycles, which can affect the carbon system and influence their regional role as sinks or sources of CO<sub>2</sub>. This study was performed on particular tropical areas that present a different seasonal behaviour related to the carbon cycle observed in the late rainy season (July 2013). Understanding the CO<sub>2</sub> drawdown and outgassing potential in these areas is needed to call attention to more long-term monitoring efforts and protect understudied tropical coastal systems more efficiently. This study is focused on nutrient values, hydrological data, biogeochemical carbon behaviour linked to the carbonate system and includes estimates of CO<sub>2</sub> fluxes in three contrasting areas off the northeastern Brazilian shelf: 1) an urbanised estuary (Recife-REC), 2) a coastal Island (Itamaracá-ITA) and 3) an oceanic archipelago (Fernando de Noronha-FN). In general, REC acted as a source, while ITA and FN as carbon sinks. In ITA, despite the high DIC and Total Alkalinity observed (mean ~2360 μmol·kg<sup>-1</sup>), the sink is associated with an effective cascading of atmospheric CO<sub>2</sub> associated with turbulent shallow waters coupled with biogenic removal of and precipitation of CaCO<sub>3</sub> by coralline algae. FN acted as a sink, linked to minor decreases in Total Alkalinity (mean~2295 μmol·kg<sup>-1</sup>) influenced by ammonium-based primary production, nitrogen fixation and sporadic entrainment of nutrient rich waters in the upper thermocline. More studies in different western tropical Atlantic coastal systems can improve the knowledge of tropical shelf seas and their contribution to the ocean carbon budget under specific regional trophic regimes.
基金supported by the Natural Science Foundation of Henan Province and the Science Research Startup Foundation of Henan Normal University (NO. 0707)
文摘A potassium organic-inorganic hybrid complex {H2[K(PMo12O40)(CH3CN)3]- (dpdo)2(H2O)}n 1 (dpdo = 4,4'-bipyridine-N,N'-dioxide) with special channels for the chain-like assembly of decorated Keggin-type anions was synthesized and structurally characterized. The crystal structure was determined by single-crystal X-ray diffraction. The crystal is of orthorhombic, space group Cmcm with a = 20.5328(17), b = 16.8877(14), c = 16,1454(14) A, V = 5598.4(8) A^3, Z = 4, C26H29N7O45KMo12P, Mr= 2380.91, Dc = 2.825 g/cm^3,μ = 2.813 mm^-1, F(000) = 4528, the final R = 0.0324 and wR = 0.0880 for 2577 observed reflections with I 〉 2σ(I). Compound 1 exhibits a 3D network structure with large channels hosting decorated poly-anion chains as guests.
基金Project(60537050) supported by the National Nature Science Foundation of China Project supported by the Opening Fund of Key Laboratory of Nonferrous Materials and Processing Technology.
文摘The photoconductive characteristic of the inorganic/organic hybridized polymer system is reported, in which a novel bi-functional photorefractive (PR) poly(N-vinyl)-3-[p-nitrophenylazo]carbazole (PVNPAK) serves as a polymeric charge-transporting and second-order nonliner optical matrix and quantum dots composed of surface passivated cadmium sulfide serve as a charge-generation sensitizer. The hybrid PVNPAK/CdS-nanoparticles polymer composites with different mass ratio of CdS to PVNPAK were prepared. The generation of photocurrent on illumination and photoconductive properties of the PVNPAK/CdS-nanoparticles polymer composites were studied. The results show that the addition of CdS nanoparticle as a photosensitizer can enhance the photoconductivity of the PVNPAK significantly because of the properties of the high quantum efficiency of photosensitization and high charge transport to conducting polymer.
基金supported by the National High Technology Research and Development Program (863 Program) of China(No.2004AA246080)the Program for the Development of High-Tech Industries from the Education Department ofJiangsu Province, China.
文摘Endogenous hormones play an important role in the growth and development of roots. The objective of this research was to study the effect of four types of N fertilizers on the root growth of strawberry (Fragaria ananassa Duchesne) and the endogenous enzymes of indole-3-acetic acid (IAA), abscisic acid (ABA), and isopentenyl adenosine (iPA) in its roots and leaves using enzyme-linked immunosorbent assay. Application of all types of N fertilizers significantly depressed (P ≤ 0.05) root growth at 20 d after transplanting. Application of organic-inorganic fertilizer (OIF) as basal fertilizer had a significant negative effect (P ≤ 0.05) on root growth. The application of OIF and urea lowered the lateral root frequency in strawberry plants at 60 d (P ≤ 0.05) compared with the application of two organic fertilizers (OFA and OFB) and the control (CK). With the fertilizer treatments, there were the same concentrations of IAA and ABA in both roots and leaves at the initial growth stage (20 d), lower levels of IAA and ABA at the later stage (60 d), and higher iPA levels at all seedling stages as compared to those of CK. Thus, changes in the concentrations of endogenous phytohormones in strawberry plants could be responsible for the morphological changes of roots due to fertilization.
基金Supported by National Key Basic Research Fund (No. 2004CB720205) and National Nature and Science Foundation of China (No. 40331003).
文摘On the basis of multi-proxy analysis on TOC, TN, C/N, organic δ^13C and grain size, sediment record from Qinghai Lake provides evidences of stepwise-pattemed climatic change since 16 ka BE Results show that Qinghai Lake underwent six environmental stages. From 16.2 to 14.3 ka BP and from 4.0 to 2.1 ka BP, the organic δ^13C value was controlled by the concentration of atmospheric CO2. Relative higher organic δ^13C values occurred between 14.3 to 10.4 ka BP indicative of water hardness decrease resulted from melting ice water, corresponding to two intervals of C/N peak values to the Boling and AIlerod warm periods in Europe respectively. From 10.4 ka BP, Qinghai Lake entered the Holocene and the climate was warm and a little dry. The Megathermal appeared at about 6.7 ka BP when the vegetation around the lake transformed into a forest. Between 6.3 ka BP and 4.0 ka BP, the temperature decreased and δ^13C value was controlled by the expansion of C3 plants and the retreat of C4 plants in river catchment. Since 4.0 ka BP, the climate gradually became cold and dry. From 2.1 ka BP, the cold-dry climate and human activity resulted in an abrupt increase in C/N with deceased δ^13C value; meanwhile, many coarse grains appeared in sediments.
文摘In?the Canadian Prairies, many soils on organic farms are low in available P, and the only alternative is to use external sources to prevent P nutrient deficiency on these soils. A 3-year (2012 to 2014) field experiment was established in spring 2012 on a P-deficient soil near Kelvington, Saskatchewan, Canada, to determine the potential of organic amendments (alfalfa pellets, compost manure, thin stillage and distiller grain dry of wheat), inorganic amendments (rock phosphate granular, rock phosphate fine, wood ash and bone meal ash) and microbial inoculants/products (JumpStart®and MYKE®PRO), applied alone or in a combination with N and/or P commercial fertilizers, in preventing P deficiency and increasing seed yield, N and P uptake of barley. Compared to unfertilized control, N only treatment did not result in any significant increase in seed yield, while application of P alone increased seed yield significantly but to a lesser degree than when both N and P fertilizers were applied together in all 3 years. Rock phosphate did not result in any seed yield benefit, even when applied along with N fertilizer. Wood ash fine increased seed yield of barley significantly only in the presence of N fertilizer, with highest seed yield in the presence of both N + P fertilizers. Seed yield of barley increased moderately with alfalfa pellets, significantly with compost manure, and considerably with distiller grain dry of wheat, but highest seed yield was obtained from thin stillage, which was essentially similar to that obtained from the N + P fertilizer combination. There was no yield benefit from JumpStart or MykePro in any year and only slight benefit from bone meal ash in 2013. The addition of N fertilizer to MykePro or bone meal ash treatments increased seed yield, but highest yield was obtained when both N and P fertilizers were added, suggesting a lack of available P for optimum seed yield. With few exceptions, the response trends of total N and P uptake in seed + straw to the amendments studied were generally similar to those of seed yield. In conclusion, the organic amendment “thin stillage” provided balanced nutrition and produced yield and nutrient uptake of barley similar to balanced N + P fertilizer treatment, and it was closely followed by “distiller grain dry of wheat”, with moderate benefit from compost manure and some benefit from alfalfa pellets. In this extremely P-deficient soil, rock phosphate was not found effective in preventing P deficiency in barley, while wood ash and bone meal ash provided moderate increase in barley yield, with little yield benefit from JumpStart and MykePro, when other nutrients were not limiting in the soil.
文摘Traditionally, soil-testing laboratories have used a variety of methods to determine soil organic matter, yet they lack a practical method to predict potential N mineralization/immobilization from soil organic matter. Soils with high micro-bial activity may experience N immobilization (or reduced net N mineralization), and this issue remains unresolved in how to predict these conditions of net mineralization or net immobilization. Prediction may become possible with the use of a more sensitive method to determine soil C:N ratios stemming from the water-extractable C and N pools that can be readily adapted by both commercial and university soil testing labs. Soil microbial activity is highly related to soil organic C and N, as well as to water-extractable organic C (WEOC) and water-extractable organic N (WEON). The relationship between soil respiration and WEOC and WEON is stronger than between respiration and soil organic C (SOC) and total organic N (TON). We explored the relationship between soil organic C:N and water-extractable organic C:N, as well as their relationship to soil microbial activity as measured by the flush of CO2 following rewetting of dried soil. In 50 different soils, the relationship between soil microbial activity and water-extractable organic C:N was much stronger than for soil organic C: N. We concluded that the water-extractable organic C:N was a more sensitive measurement of the soil substrate which drives soil microbial activity. We also suggest that a water-extractable organic C:N level > 20 be used as a practical threshold to separate those soils that may have immobilized N with high microbial activity.