Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-in...Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.展开更多
Knowledge of ground stresses is crucial for ground control activities such as the design of underground openings,selec-tion of support systems,and analysis for stability.However,it is a known fact that far field stres...Knowledge of ground stresses is crucial for ground control activities such as the design of underground openings,selec-tion of support systems,and analysis for stability.However,it is a known fact that far field stresses experience changes in orientation and magnitude due to the presence of geological structures and due to the excavations created by mining activi-ties.As a result,in-situ stresses around drifts,ramps,and stopes in underground mines are quite different from far field or pre-mining stresses.The purpose of this research is to develop a simple and practical methodology for determining in-situ stresses.Stress relief occurs once the rock core is drilled off.Such relief is a function of the surrounding stress field.This study uses exploration rock cores that are drilled off for the purpose of orebody definition in the underground mine.The method measures and analyzes the diametral core deformations in laboratory.Two case studies from operating underground mines are presented for demonstration.In these case studies,rock core deformations are measured with a customized test apparatus and rock samples were prepared and tested for Young's modulus and Poisson's ratio.The differential stress,namely the difference between the local principal stresses in the plane perpendicular to the core rock axis is calculated.It is shown that this methodology is useful for determining the brittle shear ratio in the rock mass,which is of primary interest to ground control studies.展开更多
基金Project(2021JJ10063)supported by the Natural Science Foundation of Hunan Province,ChinaProject(202115)supported by the Science and Technology Progress and Innovation Project of Hunan Provincial Department of Transportation,ChinaProject(2021K094-Z)supported by the Science and Technology Research and Development Program of China Railway Guangzhou Group Co.,Ltd。
文摘Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.
文摘Knowledge of ground stresses is crucial for ground control activities such as the design of underground openings,selec-tion of support systems,and analysis for stability.However,it is a known fact that far field stresses experience changes in orientation and magnitude due to the presence of geological structures and due to the excavations created by mining activi-ties.As a result,in-situ stresses around drifts,ramps,and stopes in underground mines are quite different from far field or pre-mining stresses.The purpose of this research is to develop a simple and practical methodology for determining in-situ stresses.Stress relief occurs once the rock core is drilled off.Such relief is a function of the surrounding stress field.This study uses exploration rock cores that are drilled off for the purpose of orebody definition in the underground mine.The method measures and analyzes the diametral core deformations in laboratory.Two case studies from operating underground mines are presented for demonstration.In these case studies,rock core deformations are measured with a customized test apparatus and rock samples were prepared and tested for Young's modulus and Poisson's ratio.The differential stress,namely the difference between the local principal stresses in the plane perpendicular to the core rock axis is calculated.It is shown that this methodology is useful for determining the brittle shear ratio in the rock mass,which is of primary interest to ground control studies.