Pure K2Ti4O9 whiskers were prepared by KDC(Kneading-Drying-Calcination) method with TiO2 and K2CO3 as raw materials. The influences of TiO2/K2CO3 molar ratio(RT/K), calcination temperature(TC) and cooling proces...Pure K2Ti4O9 whiskers were prepared by KDC(Kneading-Drying-Calcination) method with TiO2 and K2CO3 as raw materials. The influences of TiO2/K2CO3 molar ratio(RT/K), calcination temperature(TC) and cooling process on phase composition and morphology of the whiskers were investigated by TG-DSC(thermo gravimetric-differential scanning calorimeter), XRD(X-ray diffraction), and SEM(scanning electron microscope). Pure K2Ti4O9 potassium titanate whiskers with large length-diameter ratio(r)(over 250) can be obtained at RT/K = 2.9 and TC = 950 ℃.展开更多
An elastic vibration model for high length diameter ratio spinning rocket with attitude control system which can be used for trajectory simulation is established. The basic theory of elastic dynamics and vibration dy...An elastic vibration model for high length diameter ratio spinning rocket with attitude control system which can be used for trajectory simulation is established. The basic theory of elastic dynamics and vibration dynamics were both used to set up the elastic vibration model of rocket body. In order to study the problem more conveniently, the rocket's body was simplified to be an even beam with two free ends. The model was validated by simulation results and the test data.展开更多
Micropiles are drilled and grouted piles having diameter between 100 to 250 mm. Due to its small diameter, it is suitable for low headroom and limited work area conditions. It can be installed without noise nuisance, ...Micropiles are drilled and grouted piles having diameter between 100 to 250 mm. Due to its small diameter, it is suitable for low headroom and limited work area conditions. It can be installed without noise nuisance, without vibrations to surrounding soils and structures and without disruption to the production operations in industries which makes micropiles suitable for underpinning and seismic retrofitting of structures. It is necessary to therefore understand the behaviour of micropiles under different loading conditions. This work is on vertical and battered micropiles with different length/diameter ratio (L/D) subjected to vertical and lateral loading conditions. Batter angles had a significant influence on both the vertical and lateral load carrying capacity. The ultimate vertical load was found to increase upto a 30°batter. The ultimate lateral load was found to increase significantly with increasing L/D ratios upto an L/D ratio of 30 for vertical and 48 for battered piles, beyond which the increase was found to be not significant. In general, negative battered micropiles offered more lateral resistance than positive battered micropiles. The results of the study indicated that the ultimate load capacity and mode of failure of the micropiles are a function of the angle of batter, direction of batter and the L/D ratio for vertically and laterally loaded micropiles.展开更多
An improved model to calculate the length of the mixing chamber of the ejector was proposed on the basis of the Fano flow model,and a method to optimize the structures of the mixing chamber and diffuser of the ejector...An improved model to calculate the length of the mixing chamber of the ejector was proposed on the basis of the Fano flow model,and a method to optimize the structures of the mixing chamber and diffuser of the ejector was put forward.The accuracy of the model was verified by comparing the theoretical results calculated using the model to experimental data reported in literature.Variations in the length of the mixing chamber L_(m) and length of the diffuser L_(d) with respect to variations in the outlet temperature of the ejector T_(c),outlet pressure of the ejector p_(c),and the expansion ratio of the pressure of the primary flow to that of the secondary flow p_(g)/p_(e) were investigated.Moreover,variations in L_(m) and L_(d) with respect to variations in the ratio of the diameter of the throat of the motive nozzle to the diameter of the mixing chamber d_(g0)/d_(c3) and ratio of the outlet diameter of the diffuser to the diameter of themixing chamber d_(c)/d_(c3) were investigated.The distribution of flow fields in the ejector was simulated.Increasing L_(m) and d_(c3) reduced T_(c) and p_(c).Moreover,reducing p_(g)/p_(e) or d_(g0)/d_(c3) reduced T_(c) and p_(c).The length of the mixed section L_(m2),which was determined on the basis of the Fano flow model,increased as pg increased and decreased as d_(c3) increased.The mixing length L_(m1),which was considered the primary flow expansion,showed the opposite trend with that of L_(m2).Moreover,Ld increased as p_(g)/p_(e) and d_(c)/d_(c3) increased.When the value of d_(c) was 1.8 to 2.0 times as high as that of dc3,the semi-cone angle of the diffuser ranged between 6°and 12°.At a constant dc/dc3,decreasing T_(c) and pc increased Ld.展开更多
Ear morphological traits such as volume and shape are important features of maize and the quantitative associations among them can help understand kernel yield determination. 150 mature ears each of 4 maize cultivars ...Ear morphological traits such as volume and shape are important features of maize and the quantitative associations among them can help understand kernel yield determination. 150 mature ears each of 4 maize cultivars were collected from field experiments, and ear length(L), diameter(D), area(S) and volume(V) were recorded for individual ears, kernel weight per ear also recorded for a portion of the examined ears. Following principles of dimensional analysis, 8 theoretical equations of 3 sets,which relate ear higher dimensions to its length and diameter, were developed and parameterized and validated with the field observations. The 3 optimized equations showed that the shape of ears in maize can be featured with 3 dimensionless form factors, namely diameter-to-length ratio(c=D/L), areal form factor(b=S/L/D), and volumetric form factor(a=V/L/D/D). Statistically,all of them were significantly different among cultivars, and a's values varied from 0.582 to 0.612, and b's 0.839-0.868, and c's 0.242-0.308. Volumetric form factor and areal form factor could estimate precisely ear volume and area respectively, but diameter-to-length ratio was not suitable to estimate ear diameter by its length. Ear volume explained almost all variation of ear kernel weight and product L*D*D did the same substantially. Dimensional analysis proved to be promising in understanding relationship among morphological traits of ears in maize. Its application in crop researches should improve our knowledge of the physical properties of crop plants.展开更多
This critical review presents a parametric approach to the evaluation of flexural strength of advanced ceramic or glass like cylindrical rods at ambient temperature.The parameters governing the measurement and evaluat...This critical review presents a parametric approach to the evaluation of flexural strength of advanced ceramic or glass like cylindrical rods at ambient temperature.The parameters governing the measurement and evaluation of flexure strengths of glasses and ceramics are detailed with references.The scope for improvement in the existing ASTM STM C-1684 standard is described with a logical rationale and the parameters that need to be addressed are listed and explained.展开更多
By changing the length-diameter ratios and inner-to-outer diameter ratios, some numerical simulations were made on PELE normal penetrating metal target using AUTODYN-3D code. The influence rules of length-diameter rat...By changing the length-diameter ratios and inner-to-outer diameter ratios, some numerical simulations were made on PELE normal penetrating metal target using AUTODYN-3D code. The influence rules of length-diameter ratio and inner-to-outer diameter ratio to the terminal effect of PELE are obtained. When the length-diameter ratio is in the range of 4-7, inner-to-outer diameter ratio is in the range of 0.54-0.72, the PELE can perform satisfactory double terminal effects embodied in armor-piercing and fragment killing. Based on simulation results, a test projectile is designed and an impact experiment of PELE is carried out, which demonstrate the efficiency of the simulation method.展开更多
The calculation equation of large diameter bored pile's effective length is connected with its distribution of pile shaft resistance. Thus, there is a great difference between the calculation results under the differ...The calculation equation of large diameter bored pile's effective length is connected with its distribution of pile shaft resistance. Thus, there is a great difference between the calculation results under the different distributions of pile shaft resistance. Primarily, this paper summarizes the conceptualized mode of pile shaft resistance under the circum- stance that the soil surrounding the piles presents different layer distributions. Secondly, based on Mindlin's displacement solution and in consideration of the effect of pile diam- eter, the calculation equation is optimized with the assumption that the pile shaft resis- tance has a parabolic distribution. The influencing factors are analyzed according to the calculation result of effective pile length. Finally, combined with an engineering example, the calculation equation deduced in this paper is analyzed and verified. The result shows that both the Poisson ratio of soil and pile diameter have impacted the effective pile length. Compared with the Poisson ratio of soil, the effect of pile diameter is more significant. If the pile diameter remains the same, the effect of the Poisson ratio of soil to the effective pile length decreases as the ratio of pile elastic modulus and soil share modulus increases. If the Poisson ratio of soil remains the same, the effect of the pile diameter to the effective pile length increases as the ratio of pile elastic modulus and soil share modulus increases. Thus the optimized calculation result of pile effective length under the consideration of pile diameter effect is more close to the actual situation of engineering and reasonably practicable.展开更多
基金Funded by the Natural Science Foundation Key Project of Hubei Province(No.2011CDA060)
文摘Pure K2Ti4O9 whiskers were prepared by KDC(Kneading-Drying-Calcination) method with TiO2 and K2CO3 as raw materials. The influences of TiO2/K2CO3 molar ratio(RT/K), calcination temperature(TC) and cooling process on phase composition and morphology of the whiskers were investigated by TG-DSC(thermo gravimetric-differential scanning calorimeter), XRD(X-ray diffraction), and SEM(scanning electron microscope). Pure K2Ti4O9 potassium titanate whiskers with large length-diameter ratio(r)(over 250) can be obtained at RT/K = 2.9 and TC = 950 ℃.
文摘An elastic vibration model for high length diameter ratio spinning rocket with attitude control system which can be used for trajectory simulation is established. The basic theory of elastic dynamics and vibration dynamics were both used to set up the elastic vibration model of rocket body. In order to study the problem more conveniently, the rocket's body was simplified to be an even beam with two free ends. The model was validated by simulation results and the test data.
文摘Micropiles are drilled and grouted piles having diameter between 100 to 250 mm. Due to its small diameter, it is suitable for low headroom and limited work area conditions. It can be installed without noise nuisance, without vibrations to surrounding soils and structures and without disruption to the production operations in industries which makes micropiles suitable for underpinning and seismic retrofitting of structures. It is necessary to therefore understand the behaviour of micropiles under different loading conditions. This work is on vertical and battered micropiles with different length/diameter ratio (L/D) subjected to vertical and lateral loading conditions. Batter angles had a significant influence on both the vertical and lateral load carrying capacity. The ultimate vertical load was found to increase upto a 30°batter. The ultimate lateral load was found to increase significantly with increasing L/D ratios upto an L/D ratio of 30 for vertical and 48 for battered piles, beyond which the increase was found to be not significant. In general, negative battered micropiles offered more lateral resistance than positive battered micropiles. The results of the study indicated that the ultimate load capacity and mode of failure of the micropiles are a function of the angle of batter, direction of batter and the L/D ratio for vertically and laterally loaded micropiles.
文摘An improved model to calculate the length of the mixing chamber of the ejector was proposed on the basis of the Fano flow model,and a method to optimize the structures of the mixing chamber and diffuser of the ejector was put forward.The accuracy of the model was verified by comparing the theoretical results calculated using the model to experimental data reported in literature.Variations in the length of the mixing chamber L_(m) and length of the diffuser L_(d) with respect to variations in the outlet temperature of the ejector T_(c),outlet pressure of the ejector p_(c),and the expansion ratio of the pressure of the primary flow to that of the secondary flow p_(g)/p_(e) were investigated.Moreover,variations in L_(m) and L_(d) with respect to variations in the ratio of the diameter of the throat of the motive nozzle to the diameter of the mixing chamber d_(g0)/d_(c3) and ratio of the outlet diameter of the diffuser to the diameter of themixing chamber d_(c)/d_(c3) were investigated.The distribution of flow fields in the ejector was simulated.Increasing L_(m) and d_(c3) reduced T_(c) and p_(c).Moreover,reducing p_(g)/p_(e) or d_(g0)/d_(c3) reduced T_(c) and p_(c).The length of the mixed section L_(m2),which was determined on the basis of the Fano flow model,increased as pg increased and decreased as d_(c3) increased.The mixing length L_(m1),which was considered the primary flow expansion,showed the opposite trend with that of L_(m2).Moreover,Ld increased as p_(g)/p_(e) and d_(c)/d_(c3) increased.When the value of d_(c) was 1.8 to 2.0 times as high as that of dc3,the semi-cone angle of the diffuser ranged between 6°and 12°.At a constant dc/dc3,decreasing T_(c) and pc increased Ld.
基金Supported by the National Natural Science Foundation of China(31271658)National Key Research and Development Program of China(2016YFD0300306)
文摘Ear morphological traits such as volume and shape are important features of maize and the quantitative associations among them can help understand kernel yield determination. 150 mature ears each of 4 maize cultivars were collected from field experiments, and ear length(L), diameter(D), area(S) and volume(V) were recorded for individual ears, kernel weight per ear also recorded for a portion of the examined ears. Following principles of dimensional analysis, 8 theoretical equations of 3 sets,which relate ear higher dimensions to its length and diameter, were developed and parameterized and validated with the field observations. The 3 optimized equations showed that the shape of ears in maize can be featured with 3 dimensionless form factors, namely diameter-to-length ratio(c=D/L), areal form factor(b=S/L/D), and volumetric form factor(a=V/L/D/D). Statistically,all of them were significantly different among cultivars, and a's values varied from 0.582 to 0.612, and b's 0.839-0.868, and c's 0.242-0.308. Volumetric form factor and areal form factor could estimate precisely ear volume and area respectively, but diameter-to-length ratio was not suitable to estimate ear diameter by its length. Ear volume explained almost all variation of ear kernel weight and product L*D*D did the same substantially. Dimensional analysis proved to be promising in understanding relationship among morphological traits of ears in maize. Its application in crop researches should improve our knowledge of the physical properties of crop plants.
文摘This critical review presents a parametric approach to the evaluation of flexural strength of advanced ceramic or glass like cylindrical rods at ambient temperature.The parameters governing the measurement and evaluation of flexure strengths of glasses and ceramics are detailed with references.The scope for improvement in the existing ASTM STM C-1684 standard is described with a logical rationale and the parameters that need to be addressed are listed and explained.
文摘By changing the length-diameter ratios and inner-to-outer diameter ratios, some numerical simulations were made on PELE normal penetrating metal target using AUTODYN-3D code. The influence rules of length-diameter ratio and inner-to-outer diameter ratio to the terminal effect of PELE are obtained. When the length-diameter ratio is in the range of 4-7, inner-to-outer diameter ratio is in the range of 0.54-0.72, the PELE can perform satisfactory double terminal effects embodied in armor-piercing and fragment killing. Based on simulation results, a test projectile is designed and an impact experiment of PELE is carried out, which demonstrate the efficiency of the simulation method.
基金supported by the National Natural Science Foundation of China(51208047)
文摘The calculation equation of large diameter bored pile's effective length is connected with its distribution of pile shaft resistance. Thus, there is a great difference between the calculation results under the different distributions of pile shaft resistance. Primarily, this paper summarizes the conceptualized mode of pile shaft resistance under the circum- stance that the soil surrounding the piles presents different layer distributions. Secondly, based on Mindlin's displacement solution and in consideration of the effect of pile diam- eter, the calculation equation is optimized with the assumption that the pile shaft resis- tance has a parabolic distribution. The influencing factors are analyzed according to the calculation result of effective pile length. Finally, combined with an engineering example, the calculation equation deduced in this paper is analyzed and verified. The result shows that both the Poisson ratio of soil and pile diameter have impacted the effective pile length. Compared with the Poisson ratio of soil, the effect of pile diameter is more significant. If the pile diameter remains the same, the effect of the Poisson ratio of soil to the effective pile length decreases as the ratio of pile elastic modulus and soil share modulus increases. If the Poisson ratio of soil remains the same, the effect of the pile diameter to the effective pile length increases as the ratio of pile elastic modulus and soil share modulus increases. Thus the optimized calculation result of pile effective length under the consideration of pile diameter effect is more close to the actual situation of engineering and reasonably practicable.