This paper proposes a three-dimensional(3D)Maltese cross metamaterial with negative Poisson’s ratio(NPR)and negative thermal expansion(NTE)adopted as the core layers in sandwich plates,and aims to explore the relatio...This paper proposes a three-dimensional(3D)Maltese cross metamaterial with negative Poisson’s ratio(NPR)and negative thermal expansion(NTE)adopted as the core layers in sandwich plates,and aims to explore the relations between the mechanical responses of sandwich composites and the NPR or NTE of the metamaterial.First,the NPR and NTE of the metamaterial are derived analytically based on energy conservation.The effective elastic modulus and mass density of the 3D metamaterial are obtained and validated by the finite element method(FEM).Subsequently,the general governing equation of the 3D sandwich plate under thermal environments is established based on Hamilton’s principle with the consideration of the von Kármán nonlinearity.The differential quadrature(DQ)FEM(DQFEM)is utilized to obtain the numerical solutions.It is shown that NPR and NTE can enhance the global stiffness of sandwich structures.The geometric parameters of the Maltese cross metamaterial significantly affect the responses of the thermal stress,natural frequency,and critical buckling load.展开更多
2-D and 3-D micro-architectured multiphase thermoelastic metamaterials are designed and analyzed using a parametric level set method for topology optimization and the finite element method.An asymptotic homogenization...2-D and 3-D micro-architectured multiphase thermoelastic metamaterials are designed and analyzed using a parametric level set method for topology optimization and the finite element method.An asymptotic homogenization approach is employed to obtain the effective thermoelastic properties of the multiphase metamaterials.Theε-constraint multi-objective optimization method is adopted in the formulation.The coefficient of thermal expansion(CTE)and Poisson’s ratio(PR)are chosen as two objective functions,with the CTE optimized and the PR treated as a constraint.The optimization problems are solved by using the method of moving asymptotes.Effective isotropic and anisotropic CTEs and stiffness constants are obtained for the topologically optimized metamaterials with prescribed values of PR under the constraints of specified effective bulk modulus,volume fractions and material symmetry.Two solid materials along with one additional void phase are involved in each of the 2-D and 3-D optimal design examples.The numerical results reveal that the newly proposed approach can integrate shape and topology optimizations and lead to optimal microstructures with distinct topological boundaries.The current method can topologically optimize metamaterials with a positive,negative or zero CTE and a positive,negative or zero Poisson’s ratio.展开更多
In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homot...In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homotopy analysis method (HAM) is employed to obtain the expres- sions for velocity fields. Graphs are sketched for values of parameters and associated dynamic characteristics, especially the expansion ratio, are analyzed in detail.展开更多
Negative thermal expansion(NTE)of materials is an intriguing phenomenon challenging the concept of traditional lattice dynamics and of importance for a variety of applications.Progresses in this field develop markedly...Negative thermal expansion(NTE)of materials is an intriguing phenomenon challenging the concept of traditional lattice dynamics and of importance for a variety of applications.Progresses in this field develop markedly and update continuously our knowledge on the NTE behavior of materials.In this article,we review the most recent understandings on the underlying mechanisms(anharmonic phonon vibration,magnetovolume effect,ferroelectrorestriction and charge transfer)of thermal shrinkage and the development of NTE materials under each mechanism from both the theoretical and experimental aspects.Besides the low frequency optical phonons which are usually accepted as the origins of NTE in framework structures,NTE driven by acoustic phonons and the interplay between anisotropic elasticity and phonons are stressed.Based on the data documented,some problems affecting applications of NTE materials are discussed and strategies for discovering and design novel framework structured NET materials are also presented.展开更多
基金Project supported by the National Natural Science Foundation of China(No.11872098)。
文摘This paper proposes a three-dimensional(3D)Maltese cross metamaterial with negative Poisson’s ratio(NPR)and negative thermal expansion(NTE)adopted as the core layers in sandwich plates,and aims to explore the relations between the mechanical responses of sandwich composites and the NPR or NTE of the metamaterial.First,the NPR and NTE of the metamaterial are derived analytically based on energy conservation.The effective elastic modulus and mass density of the 3D metamaterial are obtained and validated by the finite element method(FEM).Subsequently,the general governing equation of the 3D sandwich plate under thermal environments is established based on Hamilton’s principle with the consideration of the von Kármán nonlinearity.The differential quadrature(DQ)FEM(DQFEM)is utilized to obtain the numerical solutions.It is shown that NPR and NTE can enhance the global stiffness of sandwich structures.The geometric parameters of the Maltese cross metamaterial significantly affect the responses of the thermal stress,natural frequency,and critical buckling load.
文摘2-D and 3-D micro-architectured multiphase thermoelastic metamaterials are designed and analyzed using a parametric level set method for topology optimization and the finite element method.An asymptotic homogenization approach is employed to obtain the effective thermoelastic properties of the multiphase metamaterials.Theε-constraint multi-objective optimization method is adopted in the formulation.The coefficient of thermal expansion(CTE)and Poisson’s ratio(PR)are chosen as two objective functions,with the CTE optimized and the PR treated as a constraint.The optimization problems are solved by using the method of moving asymptotes.Effective isotropic and anisotropic CTEs and stiffness constants are obtained for the topologically optimized metamaterials with prescribed values of PR under the constraints of specified effective bulk modulus,volume fractions and material symmetry.Two solid materials along with one additional void phase are involved in each of the 2-D and 3-D optimal design examples.The numerical results reveal that the newly proposed approach can integrate shape and topology optimizations and lead to optimal microstructures with distinct topological boundaries.The current method can topologically optimize metamaterials with a positive,negative or zero CTE and a positive,negative or zero Poisson’s ratio.
基金supported by the National Natural Science Foundations of China (50936003, 50905013)The Open Project of State Key Lab. for Adv. Matals and Materials (2009Z-02)Research Foundation of Engineering Research Institute of USTB
文摘In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homotopy analysis method (HAM) is employed to obtain the expres- sions for velocity fields. Graphs are sketched for values of parameters and associated dynamic characteristics, especially the expansion ratio, are analyzed in detail.
基金This work was supported by the National Natural Science Foundation of China(Nos.11874328,11774078,and 21905252)China Postdoctoral Science Foundation(No.2019M652558).
文摘Negative thermal expansion(NTE)of materials is an intriguing phenomenon challenging the concept of traditional lattice dynamics and of importance for a variety of applications.Progresses in this field develop markedly and update continuously our knowledge on the NTE behavior of materials.In this article,we review the most recent understandings on the underlying mechanisms(anharmonic phonon vibration,magnetovolume effect,ferroelectrorestriction and charge transfer)of thermal shrinkage and the development of NTE materials under each mechanism from both the theoretical and experimental aspects.Besides the low frequency optical phonons which are usually accepted as the origins of NTE in framework structures,NTE driven by acoustic phonons and the interplay between anisotropic elasticity and phonons are stressed.Based on the data documented,some problems affecting applications of NTE materials are discussed and strategies for discovering and design novel framework structured NET materials are also presented.