Recently Brutman and Passow considered Newman-type rational interpolation to |x| induced by arbitrary set of symmetric nodes in [-1,1] and gave the general estimation of the approximation error.By their methods one ...Recently Brutman and Passow considered Newman-type rational interpolation to |x| induced by arbitrary set of symmetric nodes in [-1,1] and gave the general estimation of the approximation error.By their methods one could establish the exact order of approximation for some special nodes. In the present paper we consider the special case where the interpolation nodes are the zeros of the Chebyshev polynomial of the second kind and prove that in this case the exact order of approximation is O(1/n|nn)展开更多
A theorem for osculatory rational interpolation was shown to establish a new criterion of interpolation. On the basis of this conclusion a practical algorithm was presented to get a reduction model of the linear syste...A theorem for osculatory rational interpolation was shown to establish a new criterion of interpolation. On the basis of this conclusion a practical algorithm was presented to get a reduction model of the linear systems. Some numerical examples were given to explain the result in this paper.展开更多
In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fracti...In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fraction form to rational function form of the interpolants, an efficient forward recurrence algorithm is obtained.展开更多
A variety of matrix rational interpolation problems include the partial realizationproblem for matrix power series and the minimal rational interpolation problem for generalmatrix functions.Several problems in circuit...A variety of matrix rational interpolation problems include the partial realizationproblem for matrix power series and the minimal rational interpolation problem for generalmatrix functions.Several problems in circuit theory and digital filter design can also be re-duced to the solution of matrix rational interpolation problems[1—4].By means of thereachability and the observability indices of defined pairs of matrices,Antoulas,Ball,Kang and Willems solved the minimal matrix rational interpolation problem in[1].On展开更多
In this paper, a three dimensional matrix valued rational interpolant (TGMRI) is first constructed by making use of the generalized inverse of matrices. The interpolants are of the Thiele type branched continued fra...In this paper, a three dimensional matrix valued rational interpolant (TGMRI) is first constructed by making use of the generalized inverse of matrices. The interpolants are of the Thiele type branched continued fraction form, with matrix numerator and scalar denominator. Some properties of TGMRI are given. An efficient recursive algorithm is proposed. The results in the paper can be extend to n variable.展开更多
In this paper, osculatory rational functions of Thiele-type introduced by Salzer (1962) are extended to the case of vector valued quantities using tile t'ormalism of Graves-Moms (1983). In the computation of the o...In this paper, osculatory rational functions of Thiele-type introduced by Salzer (1962) are extended to the case of vector valued quantities using tile t'ormalism of Graves-Moms (1983). In the computation of the osculatory continued h.actions, the three term recurrence relation is avoided and a new coefficient algorithm is introduced, which is the characteristic of recursive operation. Some examples are given to illustrate its effectiveness. A sutficient condition for cxistence is established. Some interpolating properties including uniqueness are discussed. In the end, all exact interpolating error formula is obtained.展开更多
This paper discusses the approximation problem of two kinds Durrmeyer rational interpolation operators in Orlicz spaces with weight functions,and gives a kind of Jackson type estimation of approximation order by means...This paper discusses the approximation problem of two kinds Durrmeyer rational interpolation operators in Orlicz spaces with weight functions,and gives a kind of Jackson type estimation of approximation order by means of continuous modulus, Hardy-Littlewood maximal function, convexity of N function and Jensen inequality.展开更多
In this paper we introduce a so called C-Matrix w.r.t a rational interpolation problem and study the relationship between the unattainable points and C-Matrix. Finally, we present a recursive algorithm on rational int...In this paper we introduce a so called C-Matrix w.r.t a rational interpolation problem and study the relationship between the unattainable points and C-Matrix. Finally, we present a recursive algorithm on rational interpolation.展开更多
It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollab...It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided.展开更多
A family of piecewise rational quintic interpolation is presented. Each interpolation of the family, which is identified uniquely by the value of a parameter ai, is of C^2 continuity without solving a system of consis...A family of piecewise rational quintic interpolation is presented. Each interpolation of the family, which is identified uniquely by the value of a parameter ai, is of C^2 continuity without solving a system of consistency equations for the derivative values at the knots, and can be expressed by the basis functions. Interpolant is of O(h^r) accuracy when f(x)∈C^r[a,b], and the errors have only a small floating for a big change of the parameter ai, it means the interpolation is stable for the parameter. The interpolation can preserve the shape properties of the given data, such as monotonicity and convexity, and a proper choice of parameter ai is given.展开更多
In this paper, supose Γ be a boundary of a Jordan domain D and Γ satisfied Альпер condition, the order that rational type interpolating operators at Fejer's points of f(z)∈C(Γ) converge to f(z) in the se...In this paper, supose Γ be a boundary of a Jordan domain D and Γ satisfied Альпер condition, the order that rational type interpolating operators at Fejer's points of f(z)∈C(Γ) converge to f(z) in the sense of uniformly convergence is obtained.展开更多
Both the Newton interpolating polynomials and the Thiele-type interpolating continued fractions based on inverse differences are used to construct a kind of bivariate blending rational interpolants and an error estima...Both the Newton interpolating polynomials and the Thiele-type interpolating continued fractions based on inverse differences are used to construct a kind of bivariate blending rational interpolants and an error estimation is given.展开更多
Newton's polynomial interpolation may be the favorite linear interpolation,associated continued fractions interpolation is a new type nonlinear interpolation.We use those two interpolation to construct a new kind of ...Newton's polynomial interpolation may be the favorite linear interpolation,associated continued fractions interpolation is a new type nonlinear interpolation.We use those two interpolation to construct a new kind of bivariate blending rational interpolants.Characteristic theorem is discussed.We give some new blending interpolation formulae.展开更多
General interpolation formulae for barycentric interpolation and barycen- tric rational Hermite interpolation are established by introducing multiple parameters, which include many kinds of barycentric interpolation a...General interpolation formulae for barycentric interpolation and barycen- tric rational Hermite interpolation are established by introducing multiple parameters, which include many kinds of barycentric interpolation and barycentric rational Her- mite interpolation. We discussed the interpolation theorem, dual interpolation and special cases. Numerical example is given to show the effectiveness of the method.展开更多
This article presents a novel image interpolation based on rational fractal fimction. The rational function has a simple and explicit expression. At the same time, the fi'actal interpolation surface can be defined by...This article presents a novel image interpolation based on rational fractal fimction. The rational function has a simple and explicit expression. At the same time, the fi'actal interpolation surface can be defined by proper parameters. In this paper, we used the method of 'covering blanket' combined with multi-scale analysis; the threshold is selected based on the multi-scale analysis. Selecting different parameters in the rational function model, the texture regions and smooth regions are interpolated by rational fractal interpolation and rational interpolation respectively. Experimental results on benchmark test images demonstrate that the proposed method achieves very competitive performance compared with the state-of-the-art interpolation algorithms, especially in image details and texture features.展开更多
Stress separation is usually achieved by solving differential equations of equilibrium after parameter determination from isochromatics and isoclinics.The numerical error resulting from the stress determination is a m...Stress separation is usually achieved by solving differential equations of equilibrium after parameter determination from isochromatics and isoclinics.The numerical error resulting from the stress determination is a main concern as it is always a function of parameters in discretization.To improve the accuracy of stress calculation,a novel meshless barycentric rational interpolation collocation method(BRICM)is proposed.The derivatives of the shear stress on the calculation path are determined by using the differential matrix which converts the differential form of the equations of equilibrium into a series of algebraic equations.The advantage of the proposed method is that the auxiliary lines,grids,and error accumulation which are commonly used in traditional shear difference methods(SDMs)are not required.Simulation and experimental results indicate that the proposed meshless method is able to provide high computational accuracy in the full-field stress determination.展开更多
At present, the methods of constructing vector valued rational interpolation function in rectangular mesh are mainly presented by means of the branched continued fractions. In order to get vector valued rational inter...At present, the methods of constructing vector valued rational interpolation function in rectangular mesh are mainly presented by means of the branched continued fractions. In order to get vector valued rational interpolation function with lower degree and better approximation effect, the paper divides rectangular mesh into pieces by choosing nonnegative integer parameters d1 (0 〈 dl ≤ m) and d2 (0 ≤ d2≤ n), builds bivariate polynomial vector interpolation for each piece, then combines with them properly. As compared with previous methods, the new method given by this paper is easy to compute and the degree for the interpolants is lower.展开更多
By virtue of the rational interpolation procedure and logarithmic strain, a direct approach is proposed to obtain elastic potentials that exactly match uniaxial data and shear data for elastomers. This approach reduce...By virtue of the rational interpolation procedure and logarithmic strain, a direct approach is proposed to obtain elastic potentials that exactly match uniaxial data and shear data for elastomers. This approach reduces the determination of multi axial elastic potentials to that of two one-dimensional potentials, thus bypassing usual cumbersome procedures of identifying a number of unknown parameters. Predictions of the suggested potential are derived for a general biaxial stretch test and compared with the classical data given by Rivlin and Saunders (Rivlin, R. S. and Saunders, D. W. Large elastic deformation of isotropic materials. VII: experiments on the deformation of rubber. Phill. Trans. Royal Soc. London A, 243, 251-288 (1951)). Good agreement is achieved with these extensive data.展开更多
Recently Brutman and Passow considered Newman-type rational interpolation to |x| induced by arbitrary sets of symmetric nodes in [-1,1] and gave the general estimation of the approximation error.By their methods,one...Recently Brutman and Passow considered Newman-type rational interpolation to |x| induced by arbitrary sets of symmetric nodes in [-1,1] and gave the general estimation of the approximation error.By their methods,one could establish the exact order of approximation for some special nodes.In the present note we consider the sets of interpolation nodes obtained by adjusting the Chebyshev roots of the second kind on the interval [0,1] and then extending this set to [-1,1] in a symmetric way.We show that in this case the exact order of approximation is O( 1 n 2 ).展开更多
In order to meet the needs of practical design, an interpolation technique is employed to constrain the shape of surfaces. The method of preserving positivity on the interpolation surface and constraint on interpolati...In order to meet the needs of practical design, an interpolation technique is employed to constrain the shape of surfaces. The method of preserving positivity on the interpolation surface and constraint on interpolating data is also developed. The advantage of this new method is that it can be used to constrain the shape of an interpolating surface only by selecting suitable parameters, and numerical examples are presented to show the performance of the method.展开更多
基金Supported by the National Nature Science Foundation.
文摘Recently Brutman and Passow considered Newman-type rational interpolation to |x| induced by arbitrary set of symmetric nodes in [-1,1] and gave the general estimation of the approximation error.By their methods one could establish the exact order of approximation for some special nodes. In the present paper we consider the special case where the interpolation nodes are the zeros of the Chebyshev polynomial of the second kind and prove that in this case the exact order of approximation is O(1/n|nn)
基金supported by the National Natural Science Foundation of China (Grant No.10271074)
文摘A theorem for osculatory rational interpolation was shown to establish a new criterion of interpolation. On the basis of this conclusion a practical algorithm was presented to get a reduction model of the linear systems. Some numerical examples were given to explain the result in this paper.
文摘In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fraction form to rational function form of the interpolants, an efficient forward recurrence algorithm is obtained.
基金The works is supported by the National Natural Science Foundation of China(19871054)
文摘A variety of matrix rational interpolation problems include the partial realizationproblem for matrix power series and the minimal rational interpolation problem for generalmatrix functions.Several problems in circuit theory and digital filter design can also be re-duced to the solution of matrix rational interpolation problems[1—4].By means of thereachability and the observability indices of defined pairs of matrices,Antoulas,Ball,Kang and Willems solved the minimal matrix rational interpolation problem in[1].On
文摘In this paper, a three dimensional matrix valued rational interpolant (TGMRI) is first constructed by making use of the generalized inverse of matrices. The interpolants are of the Thiele type branched continued fraction form, with matrix numerator and scalar denominator. Some properties of TGMRI are given. An efficient recursive algorithm is proposed. The results in the paper can be extend to n variable.
文摘In this paper, osculatory rational functions of Thiele-type introduced by Salzer (1962) are extended to the case of vector valued quantities using tile t'ormalism of Graves-Moms (1983). In the computation of the osculatory continued h.actions, the three term recurrence relation is avoided and a new coefficient algorithm is introduced, which is the characteristic of recursive operation. Some examples are given to illustrate its effectiveness. A sutficient condition for cxistence is established. Some interpolating properties including uniqueness are discussed. In the end, all exact interpolating error formula is obtained.
基金Supported by the National Natural Science Foundation of China(liT61055) Supported by the Inner Mongolia Autonomous Region Natural Science Foundation of China(2017MS0123)
文摘This paper discusses the approximation problem of two kinds Durrmeyer rational interpolation operators in Orlicz spaces with weight functions,and gives a kind of Jackson type estimation of approximation order by means of continuous modulus, Hardy-Littlewood maximal function, convexity of N function and Jensen inequality.
基金The NNSF (10471055) of China and the National Grand Fundamental Research 973 Program (2004CB318000) of China.
文摘In this paper we introduce a so called C-Matrix w.r.t a rational interpolation problem and study the relationship between the unattainable points and C-Matrix. Finally, we present a recursive algorithm on rational interpolation.
文摘It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided.
基金Supported by National Nature Science Foundation of China(No.61070096)the Natural Science Foundation of Shandong Province(No.ZR2012FL05,No.2015ZRE27056)
文摘A family of piecewise rational quintic interpolation is presented. Each interpolation of the family, which is identified uniquely by the value of a parameter ai, is of C^2 continuity without solving a system of consistency equations for the derivative values at the knots, and can be expressed by the basis functions. Interpolant is of O(h^r) accuracy when f(x)∈C^r[a,b], and the errors have only a small floating for a big change of the parameter ai, it means the interpolation is stable for the parameter. The interpolation can preserve the shape properties of the given data, such as monotonicity and convexity, and a proper choice of parameter ai is given.
文摘In this paper, supose Γ be a boundary of a Jordan domain D and Γ satisfied Альпер condition, the order that rational type interpolating operators at Fejer's points of f(z)∈C(Γ) converge to f(z) in the sense of uniformly convergence is obtained.
文摘Both the Newton interpolating polynomials and the Thiele-type interpolating continued fractions based on inverse differences are used to construct a kind of bivariate blending rational interpolants and an error estimation is given.
基金Supported by the Project Foundation of the Department of Education of Anhui Province(KJ2008A027,KJ2010B182,KJ2011B152,KJ2011B137)Supported by the Grant of Scientific Research Foundation for Talents of Hefei University(11RC05)Supported by the Grant of Scientific Research Foundation Hefei University(11KY06ZR)
文摘Newton's polynomial interpolation may be the favorite linear interpolation,associated continued fractions interpolation is a new type nonlinear interpolation.We use those two interpolation to construct a new kind of bivariate blending rational interpolants.Characteristic theorem is discussed.We give some new blending interpolation formulae.
基金supported by the grant of Key Scientific Research Foundation of Education Department of Anhui Province, No. KJ2014A210
文摘General interpolation formulae for barycentric interpolation and barycen- tric rational Hermite interpolation are established by introducing multiple parameters, which include many kinds of barycentric interpolation and barycentric rational Her- mite interpolation. We discussed the interpolation theorem, dual interpolation and special cases. Numerical example is given to show the effectiveness of the method.
基金Supported by National Natural Science Foundation of China(Nos.6137308061402261+3 种基金61303088U1201258)Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province(Nos.BS2013DX039BS2013DX048)
文摘This article presents a novel image interpolation based on rational fractal fimction. The rational function has a simple and explicit expression. At the same time, the fi'actal interpolation surface can be defined by proper parameters. In this paper, we used the method of 'covering blanket' combined with multi-scale analysis; the threshold is selected based on the multi-scale analysis. Selecting different parameters in the rational function model, the texture regions and smooth regions are interpolated by rational fractal interpolation and rational interpolation respectively. Experimental results on benchmark test images demonstrate that the proposed method achieves very competitive performance compared with the state-of-the-art interpolation algorithms, especially in image details and texture features.
基金Project supported by the National Key R&D Program of China(No.2018YFF01014200)the National Natural Science Foundation of China(Nos.11727804,11872240,12072184,12002197,and 51732008)the China Postdoctoral Science Foundation(Nos.2020M671070 and 2021M692025)。
文摘Stress separation is usually achieved by solving differential equations of equilibrium after parameter determination from isochromatics and isoclinics.The numerical error resulting from the stress determination is a main concern as it is always a function of parameters in discretization.To improve the accuracy of stress calculation,a novel meshless barycentric rational interpolation collocation method(BRICM)is proposed.The derivatives of the shear stress on the calculation path are determined by using the differential matrix which converts the differential form of the equations of equilibrium into a series of algebraic equations.The advantage of the proposed method is that the auxiliary lines,grids,and error accumulation which are commonly used in traditional shear difference methods(SDMs)are not required.Simulation and experimental results indicate that the proposed meshless method is able to provide high computational accuracy in the full-field stress determination.
基金Supported by Shanghai Natural Science Foundation (Grant No.10ZR1410900)Key Disciplines of Shanghai Mu-nicipality (Grant No.S30104)+1 种基金the Anhui Provincial Natural Science Foundation (Grant No.070416227)Stu-dents’ Innovation Foundation of Hefei University of Technology (Grant No.XS08079)
文摘At present, the methods of constructing vector valued rational interpolation function in rectangular mesh are mainly presented by means of the branched continued fractions. In order to get vector valued rational interpolation function with lower degree and better approximation effect, the paper divides rectangular mesh into pieces by choosing nonnegative integer parameters d1 (0 〈 dl ≤ m) and d2 (0 ≤ d2≤ n), builds bivariate polynomial vector interpolation for each piece, then combines with them properly. As compared with previous methods, the new method given by this paper is easy to compute and the degree for the interpolants is lower.
基金Project supported by the National Natural Science Foundation of China(No.11372172)the 211-Plan of the Education Committee of China(No.A.15-B002-09-032)the Research Innovation Fund of Shanghai University(No.A.10-0401-12-001)
文摘By virtue of the rational interpolation procedure and logarithmic strain, a direct approach is proposed to obtain elastic potentials that exactly match uniaxial data and shear data for elastomers. This approach reduces the determination of multi axial elastic potentials to that of two one-dimensional potentials, thus bypassing usual cumbersome procedures of identifying a number of unknown parameters. Predictions of the suggested potential are derived for a general biaxial stretch test and compared with the classical data given by Rivlin and Saunders (Rivlin, R. S. and Saunders, D. W. Large elastic deformation of isotropic materials. VII: experiments on the deformation of rubber. Phill. Trans. Royal Soc. London A, 243, 251-288 (1951)). Good agreement is achieved with these extensive data.
基金Supported by the National Natural Science Foundation of China (Grant No. 10601065)
文摘Recently Brutman and Passow considered Newman-type rational interpolation to |x| induced by arbitrary sets of symmetric nodes in [-1,1] and gave the general estimation of the approximation error.By their methods,one could establish the exact order of approximation for some special nodes.In the present note we consider the sets of interpolation nodes obtained by adjusting the Chebyshev roots of the second kind on the interval [0,1] and then extending this set to [-1,1] in a symmetric way.We show that in this case the exact order of approximation is O( 1 n 2 ).
基金Supported by National nature Science Foundation of China(10771125)Nature Science Foundation of the Shandong Province(Y2007A20)
文摘In order to meet the needs of practical design, an interpolation technique is employed to constrain the shape of surfaces. The method of preserving positivity on the interpolation surface and constraint on interpolating data is also developed. The advantage of this new method is that it can be used to constrain the shape of an interpolating surface only by selecting suitable parameters, and numerical examples are presented to show the performance of the method.