Abstract For two rational quadratic B spline curves with same control vertexes, the cross ratio of four collinear points are represented: which are any one of the vertexes, and the two points that the ray initialing f...Abstract For two rational quadratic B spline curves with same control vertexes, the cross ratio of four collinear points are represented: which are any one of the vertexes, and the two points that the ray initialing from the vertex intersects with the corresponding segments of the two curves, and the point the ray intersecting with the connecting line between the two neighboring vertexes. Different from rational quadratic Bézier curves, the value is generally related with the location of the ray, and the necessary and sufficient condition of the ratio being independent of the ray's location is showed. Also another cross ratio of the following four collinear points are suggested, i.e. one vertex, the points that the ray from the initial vertex intersects respectively with the curve segment, the line connecting the segments end points, and the line connecting the two neighboring vertexes. This cross ratio is concerned only with the ray's location, but not with the weights of the curve. Furthermore, the cross ratio is projective invariant under the projective transformation between the two segments.展开更多
By adopting the method of controlling parameters this paper describes the construction of various kinds of cubic curve segment and curved surface fragment with rational and non rational parameters, and discusses the ...By adopting the method of controlling parameters this paper describes the construction of various kinds of cubic curve segment and curved surface fragment with rational and non rational parameters, and discusses the relationship between controlling parameters, weighted factors and types, kinds and characteristics of curve segments and curved surface fragments. A mathematical method is provided for CAGD with abundant connotations, broad covering region, convenience, flexibility and direct simplicity.展开更多
This paper considers the construction of a rational cubic B-spline curve that willinterpolate a sequence of data points x'+ith specified tangent directions at those points. It is emphasisedthat the constraints are...This paper considers the construction of a rational cubic B-spline curve that willinterpolate a sequence of data points x'+ith specified tangent directions at those points. It is emphasisedthat the constraints are purely geometrical and that the pararnetric tangent magnitudes are notassigned as in many' curl'e manipulation methods. The knot vector is fixed and the unknowns are thecontrol points and x'eightsf in this respect the technique is fundamentally different from otherswhere knot insertion is allowed.First. the theoretical result3 for the uniform rational cubic B-spline are presented. Then. in theplanar case. the effect of changes to the tangent at a single point and the acceptable bounds for thechange are established so that all the weights and tangent magnitUdes remain positive. Finally, aninteractive procedure for controlling the shape of a planar rational cubic B-spline curve is presented.展开更多
The problem of parametric speed approximation of a rational curve is raised in this paper. Offset curves are widely used in various applications. As for the reason that in most cases the offset curves do not preserve ...The problem of parametric speed approximation of a rational curve is raised in this paper. Offset curves are widely used in various applications. As for the reason that in most cases the offset curves do not preserve the same polynomial or rational polynomial representations, it arouses difficulty in applications. Thus approximation methods have been introduced to solve this problem. In this paper, it has been pointed out that the crux of offset curve approximation lies in the approximation of parametric speed. Based on the Jacobi polynomial approximation theory with endpoints interpolation, an algebraic rational approximation algorithm of offset curve, which preserves the direction of normal, is presented.展开更多
By using some elementary inequalities, authors in this paper makes further improvement for estimating the heights of Bézier curve and rational Bézier curve. And the termination criterion for subdivision of t...By using some elementary inequalities, authors in this paper makes further improvement for estimating the heights of Bézier curve and rational Bézier curve. And the termination criterion for subdivision of the rational Bézier curve is also improved. The conclusion of the extreme value problem is thus further confirmed.展开更多
Many works have investigated the problem of reparameterizing rational B^zier curves or surfaces via MSbius transformation to adjust their parametric distribution as well as weights, such that the maximal ratio of weig...Many works have investigated the problem of reparameterizing rational B^zier curves or surfaces via MSbius transformation to adjust their parametric distribution as well as weights, such that the maximal ratio of weights becomes smallerthat some algebraic and computational properties of the curves or surfaces can be improved in a way. However, it is an indication of veracity and optimization of the reparameterization to do prior to judge whether the maximal ratio of weights reaches minimum, and verify the new weights after MSbius transfor- mation. What's more the users of computer aided design softwares may require some guidelines for designing rational B6zier curves or surfaces with the smallest ratio of weights. In this paper we present the necessary and sufficient conditions that the maximal ratio of weights of the curves or surfaces reaches minimum and also describe it by using weights succinctly and straightway. The weights being satisfied these conditions are called being in the stable state. Applying such conditions, any giving rational B6zier curve or surface can automatically be adjusted to come into the stable state by CAD system, that is, the curve or surface possesses its optimal para- metric distribution. Finally, we give some numerical examples for demonstrating our results in important applications of judging the stable state of weights of the curves or surfaces and designing rational B6zier surfaces with compact derivative bounds.展开更多
Applying homogeneous coordinates, we extend a newly appeared algorithm of best constrained multi-degree reduction for polynomial Bezier curves to the algorithms of constrained multi-degree reduction for rational Bezie...Applying homogeneous coordinates, we extend a newly appeared algorithm of best constrained multi-degree reduction for polynomial Bezier curves to the algorithms of constrained multi-degree reduction for rational Bezier curves. The idea is introducing two criteria, variance criterion and ratio criterion, for reparameterization of rational Bezier curves, which are used to make uniform the weights of the rational Bezier curves as accordant as possible, and then do multi-degree reduction for each component in homogeneous coordinates. Compared with the two traditional algorithms of "cancelling the best linear common divisor" and "shifted Chebyshev polynomial", the two new algorithms presented here using reparameterization have advantages of simplicity and fast computing, being able to preserve high degrees continuity at the end points of the curves, do multi-degree reduction at one time, and have good approximating effect.展开更多
Necessary and sufficient conditions for the relationship of weights and control points of two parametrically and geometrically coincident rational Bézier or NURBS curves are discussed in detail. The method is bas...Necessary and sufficient conditions for the relationship of weights and control points of two parametrically and geometrically coincident rational Bézier or NURBS curves are discussed in detail. The method is based on the reduction of matrices and transformation between rational Bézier curves and NURBS curves.展开更多
The monotonicity of a rational Bezier curve, usually related to an explicit function, is determined by the used coordinate system. However, the shape of the curve is independent of the coordinate system. To meet the a...The monotonicity of a rational Bezier curve, usually related to an explicit function, is determined by the used coordinate system. However, the shape of the curve is independent of the coordinate system. To meet the affine invariant property, a kind of generalized mono- tonicity, called direction monotonicity, is introduced for rational Bezier curves. The direction monotonicity is applied to both planar and space curves and to both Cartesian and affine co- ordinate systems, and it includes the traditional monotonicity as a subcase. By means of it, proper affine coordinate systems may be chosen to make some rational Bezier curves monotonic. Direction monotonic interpolation may be realized for some of the traditionally nonmonotonic data as well.展开更多
Based on rational Bézier curves given by Ron Goldman, a new fractional rational Bézier curve was first defined in terms of fractional Bernstein bases. Moreover, some basic properties were dicussed and a theo...Based on rational Bézier curves given by Ron Goldman, a new fractional rational Bézier curve was first defined in terms of fractional Bernstein bases. Moreover, some basic properties were dicussed and a theorem connected to Poisson curves was obtained. Some examples in this paper were given by the visual results.展开更多
The paper discusses the relationship between weights and control vertices of two rational NURBS curves of degree two or three with all weights larger than zero when they represent the same curve parametrically and geo...The paper discusses the relationship between weights and control vertices of two rational NURBS curves of degree two or three with all weights larger than zero when they represent the same curve parametrically and geometrically, and gives sufficient and necessary conditions for coincidence of two rational NURBS curves in non-degeneracy case.展开更多
We compute rational points on real hyperelliptic curves of genus 3 defined on <img src="Edit_ff1a2758-8302-45a6-8c7e-a73bd35f12bd.png" width="20" height="18" alt="" /> who...We compute rational points on real hyperelliptic curves of genus 3 defined on <img src="Edit_ff1a2758-8302-45a6-8c7e-a73bd35f12bd.png" width="20" height="18" alt="" /> whose Jacobian have Mordell-Weil rank <em>r=0</em>. We present an implementation in sagemath of an algorithm which describes the birational transformation of real hyperelliptic curves into imaginary hyperelliptic curves and <span>the Chabauty-Coleman method to find <em>C </em>(<img src="Edit_243e29b4-1b26-469a-9e65-461ffac1e473.png" width="20" height="18" alt="" />)<span></span>. We run the algorithms in</span> Sage on 47 real hyperelliptic curves of genus 3.展开更多
Adjusting weights as a shape control tool in rational B6zier curve design is not easy because the weights have a global in- fluence. The curve could not approximate control polygon satisfactorily by an interactive man...Adjusting weights as a shape control tool in rational B6zier curve design is not easy because the weights have a global in- fluence. The curve could not approximate control polygon satisfactorily by an interactive manner. In order to produce a curve close enough to control polygon at every control vertex, an optimization model is established to minimize the distance between rational B6zier curve and its control points. This optimization problem is converted to a quadratic programming problem by separating and recombining the objective function. The new combined multi-objective optimization problem is reasonable and easy to solve. With an optimal parameter, the computing process is discussed. Comparative examples show that the designed curve is closer to control polygon and preserves the shape of the control polygon well.展开更多
Abstract This paper deals with how to perturb a given set of polynomials so as to include a common linear factor. An algorithm is derived for determining such a set of perturbation polynomials which are subject to cer...Abstract This paper deals with how to perturb a given set of polynomials so as to include a common linear factor. An algorithm is derived for determining such a set of perturbation polynomials which are subject to certain constrains at the endpoints of a prescribed parametric interval and minimized in a certain sense. This result can be combined with subdivision technique to obtain a continuous piecewise approximation to a rational curve.展开更多
This paper discusses the problem that constructing a curve to satisfy the given endpoint constraints and chord-length parameters. Based on the research of Lu, the curve construction method for the entire tangent angle...This paper discusses the problem that constructing a curve to satisfy the given endpoint constraints and chord-length parameters. Based on the research of Lu, the curve construction method for the entire tangent angles region (α0, α1)∈(-r, r)×(-r, r) is given. Firstly, to ensure the weights are always positive, the three characteristics of cubic rational Bezier curve is proved, then the segment construction idea for the other tangent angles are presented in view of the three characteristics. The curve constructed with the new method satisfies the endpoint constraint and chord-length parameters, it's G1 continuous in every segment curve, and the shapes of the curve are well.展开更多
This paper describes a new method for simulation of the cross section shape of log. The self-developed MQK3102 log shape recognizing machine was used to acquire the finite discrete sampling points on the cross section...This paper describes a new method for simulation of the cross section shape of log. The self-developed MQK3102 log shape recognizing machine was used to acquire the finite discrete sampling points on the cross section of log and those points were fitted with the quadratic B-spline parametric curve. This method can clearly stimulate the real shape of the log cross section and is characterized by limited sampling points and high speed computing. The computed result of the previous curve does not affect the next one, which may avoid the graphic distortion caused by the accumulative error. The method can be used to simulate the whole body shape of log approximately by sampling the cross sections along the length direction of log, thus providing a reference model for optimum saw cutting of log.展开更多
To realize the high precision and real-time interpolation of the NURBS (non-uniform rational B-spline) curve, a kinetic model based on the modified sigmoid function is proposed. The constraints of maximum feed rate,...To realize the high precision and real-time interpolation of the NURBS (non-uniform rational B-spline) curve, a kinetic model based on the modified sigmoid function is proposed. The constraints of maximum feed rate, chord error, curvature radius and interpolator cycle are discussed. This kinetic model reduces the cubic polynomial S-shape model and the trigonometry function S-shape model from 15 sections into 3 sections under the precondition of jerk, acceleration and feedrate continuity. Then an optimized Adams algorithm using the difference quotient to replace the derivative is presented to calculate the interpolator cycle parameters. The higher-order derivation in the Taylor expansion algorithm can be avoided by this algorithm. Finally, the simplified design is analyzed by reducing the times of computing the low-degree zero-value B-spline basis function and the simplified De Boor-Cox recursive algorithm is proposed. The simulation analysis indicates that by these algorithms, the feed rate is effectively controlled according to tool path. The calculated amount is decreased and the calculated speed is increased while the machining precision is ensured. The experimental results show that the target parameter can be correctly calculated and these algorithms can be applied to actual systems.展开更多
In this paper,we propose an efficient method to construct energy-minimizing B-spline curves by using discrete mask method.The linear relations between control points are firstly derived for different energy-minimizati...In this paper,we propose an efficient method to construct energy-minimizing B-spline curves by using discrete mask method.The linear relations between control points are firstly derived for different energy-minimization problems,then the construction of B-spline curve with minimal internal energy can be addressed by solving a sparse linear system.The existence and uniqueness of the solution for the linear system are also proved.Experimental results show the efficiency of the proposed approach,and its application in 1 G blending curve construction is also presented.展开更多
Parametric curves such as Bézier and B-splines, originally developedfor the design of automobile bodies, are now also used in image processing andcomputer vision. For example, reconstructing an object shape in an...Parametric curves such as Bézier and B-splines, originally developedfor the design of automobile bodies, are now also used in image processing andcomputer vision. For example, reconstructing an object shape in an image,including different translations, scales, and orientations, can be performedusing these parametric curves. For this, Bézier and B-spline curves can be generatedusing a point set that belongs to the outer boundary of the object. Theresulting object shape can be used in computer vision fields, such as searchingand segmentation methods and training machine learning algorithms. Theprerequisite for reconstructing the shape with parametric curves is to obtainsequentially the points in the point set. In this study, a novel algorithm hasbeen developed that sequentially obtains the pixel locations constituting theouter boundary of the object. The proposed algorithm, unlike the methods inthe literature, is implemented using a filter containing weights and an outercircle surrounding the object. In a binary format image, the starting point ofthe tracing is determined using the outer circle, and the next tracing movementand the pixel to be labeled as the boundary point is found by the filter weights.Then, control points that define the curve shape are selected by reducing thenumber of sequential points. Thus, the Bézier and B-spline curve equationsdescribing the shape are obtained using these points. In addition, differenttranslations, scales, and rotations of the object shape are easily provided bychanging the positions of the control points. It has also been shown that themissing part of the object can be completed thanks to the parametric curves.展开更多
Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curv...Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curve. Then this method can be easily extended to the approximate merging problem of multiple B-spline curves and of two adjacent surfaces. After minimizing the approximate error between curves or surfaces, the approximate merging problem can be transformed into equations solving. We express both the new control points and the precise error of approximation explicitly in matrix form. Based on homogeneous coordinates and quadratic programming, we also introduce a new framework for approximate merging of two adjacent NURBS curves. Finally, several numerical examples demonstrate the effectiveness and validity of the algorithm.展开更多
文摘Abstract For two rational quadratic B spline curves with same control vertexes, the cross ratio of four collinear points are represented: which are any one of the vertexes, and the two points that the ray initialing from the vertex intersects with the corresponding segments of the two curves, and the point the ray intersecting with the connecting line between the two neighboring vertexes. Different from rational quadratic Bézier curves, the value is generally related with the location of the ray, and the necessary and sufficient condition of the ratio being independent of the ray's location is showed. Also another cross ratio of the following four collinear points are suggested, i.e. one vertex, the points that the ray from the initial vertex intersects respectively with the curve segment, the line connecting the segments end points, and the line connecting the two neighboring vertexes. This cross ratio is concerned only with the ray's location, but not with the weights of the curve. Furthermore, the cross ratio is projective invariant under the projective transformation between the two segments.
文摘By adopting the method of controlling parameters this paper describes the construction of various kinds of cubic curve segment and curved surface fragment with rational and non rational parameters, and discusses the relationship between controlling parameters, weighted factors and types, kinds and characteristics of curve segments and curved surface fragments. A mathematical method is provided for CAGD with abundant connotations, broad covering region, convenience, flexibility and direct simplicity.
文摘This paper considers the construction of a rational cubic B-spline curve that willinterpolate a sequence of data points x'+ith specified tangent directions at those points. It is emphasisedthat the constraints are purely geometrical and that the pararnetric tangent magnitudes are notassigned as in many' curl'e manipulation methods. The knot vector is fixed and the unknowns are thecontrol points and x'eightsf in this respect the technique is fundamentally different from otherswhere knot insertion is allowed.First. the theoretical result3 for the uniform rational cubic B-spline are presented. Then. in theplanar case. the effect of changes to the tangent at a single point and the acceptable bounds for thechange are established so that all the weights and tangent magnitUdes remain positive. Finally, aninteractive procedure for controlling the shape of a planar rational cubic B-spline curve is presented.
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312101) and the National Natural Science Foun-dation of China (Nos. 60373033 and 60333010)
文摘The problem of parametric speed approximation of a rational curve is raised in this paper. Offset curves are widely used in various applications. As for the reason that in most cases the offset curves do not preserve the same polynomial or rational polynomial representations, it arouses difficulty in applications. Thus approximation methods have been introduced to solve this problem. In this paper, it has been pointed out that the crux of offset curve approximation lies in the approximation of parametric speed. Based on the Jacobi polynomial approximation theory with endpoints interpolation, an algebraic rational approximation algorithm of offset curve, which preserves the direction of normal, is presented.
文摘By using some elementary inequalities, authors in this paper makes further improvement for estimating the heights of Bézier curve and rational Bézier curve. And the termination criterion for subdivision of the rational Bézier curve is also improved. The conclusion of the extreme value problem is thus further confirmed.
基金Supported by the National Nature Science Foundations of China(61070065)
文摘Many works have investigated the problem of reparameterizing rational B^zier curves or surfaces via MSbius transformation to adjust their parametric distribution as well as weights, such that the maximal ratio of weights becomes smallerthat some algebraic and computational properties of the curves or surfaces can be improved in a way. However, it is an indication of veracity and optimization of the reparameterization to do prior to judge whether the maximal ratio of weights reaches minimum, and verify the new weights after MSbius transfor- mation. What's more the users of computer aided design softwares may require some guidelines for designing rational B6zier curves or surfaces with the smallest ratio of weights. In this paper we present the necessary and sufficient conditions that the maximal ratio of weights of the curves or surfaces reaches minimum and also describe it by using weights succinctly and straightway. The weights being satisfied these conditions are called being in the stable state. Applying such conditions, any giving rational B6zier curve or surface can automatically be adjusted to come into the stable state by CAD system, that is, the curve or surface possesses its optimal para- metric distribution. Finally, we give some numerical examples for demonstrating our results in important applications of judging the stable state of weights of the curves or surfaces and designing rational B6zier surfaces with compact derivative bounds.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB719400)the National Natural Science Founda-tion of China (Nos. 60673031 and 60333010)the National Natural Science Foundation for Innovative Research Groups of China (No. 60021201)
文摘Applying homogeneous coordinates, we extend a newly appeared algorithm of best constrained multi-degree reduction for polynomial Bezier curves to the algorithms of constrained multi-degree reduction for rational Bezier curves. The idea is introducing two criteria, variance criterion and ratio criterion, for reparameterization of rational Bezier curves, which are used to make uniform the weights of the rational Bezier curves as accordant as possible, and then do multi-degree reduction for each component in homogeneous coordinates. Compared with the two traditional algorithms of "cancelling the best linear common divisor" and "shifted Chebyshev polynomial", the two new algorithms presented here using reparameterization have advantages of simplicity and fast computing, being able to preserve high degrees continuity at the end points of the curves, do multi-degree reduction at one time, and have good approximating effect.
文摘Necessary and sufficient conditions for the relationship of weights and control points of two parametrically and geometrically coincident rational Bézier or NURBS curves are discussed in detail. The method is based on the reduction of matrices and transformation between rational Bézier curves and NURBS curves.
基金Supported by the National Natural Science Foundation of China(6140220111326243+3 种基金612723001137117411501252)the Jiangsu Natural Science Foundation of China(BK20130117)
文摘The monotonicity of a rational Bezier curve, usually related to an explicit function, is determined by the used coordinate system. However, the shape of the curve is independent of the coordinate system. To meet the affine invariant property, a kind of generalized mono- tonicity, called direction monotonicity, is introduced for rational Bezier curves. The direction monotonicity is applied to both planar and space curves and to both Cartesian and affine co- ordinate systems, and it includes the traditional monotonicity as a subcase. By means of it, proper affine coordinate systems may be chosen to make some rational Bezier curves monotonic. Direction monotonic interpolation may be realized for some of the traditionally nonmonotonic data as well.
文摘Based on rational Bézier curves given by Ron Goldman, a new fractional rational Bézier curve was first defined in terms of fractional Bernstein bases. Moreover, some basic properties were dicussed and a theorem connected to Poisson curves was obtained. Some examples in this paper were given by the visual results.
文摘The paper discusses the relationship between weights and control vertices of two rational NURBS curves of degree two or three with all weights larger than zero when they represent the same curve parametrically and geometrically, and gives sufficient and necessary conditions for coincidence of two rational NURBS curves in non-degeneracy case.
文摘We compute rational points on real hyperelliptic curves of genus 3 defined on <img src="Edit_ff1a2758-8302-45a6-8c7e-a73bd35f12bd.png" width="20" height="18" alt="" /> whose Jacobian have Mordell-Weil rank <em>r=0</em>. We present an implementation in sagemath of an algorithm which describes the birational transformation of real hyperelliptic curves into imaginary hyperelliptic curves and <span>the Chabauty-Coleman method to find <em>C </em>(<img src="Edit_243e29b4-1b26-469a-9e65-461ffac1e473.png" width="20" height="18" alt="" />)<span></span>. We run the algorithms in</span> Sage on 47 real hyperelliptic curves of genus 3.
基金Supported by Natural Science Foundation of China(No.10871208,No.60970097)
文摘Adjusting weights as a shape control tool in rational B6zier curve design is not easy because the weights have a global in- fluence. The curve could not approximate control polygon satisfactorily by an interactive manner. In order to produce a curve close enough to control polygon at every control vertex, an optimization model is established to minimize the distance between rational B6zier curve and its control points. This optimization problem is converted to a quadratic programming problem by separating and recombining the objective function. The new combined multi-objective optimization problem is reasonable and easy to solve. With an optimal parameter, the computing process is discussed. Comparative examples show that the designed curve is closer to control polygon and preserves the shape of the control polygon well.
文摘Abstract This paper deals with how to perturb a given set of polynomials so as to include a common linear factor. An algorithm is derived for determining such a set of perturbation polynomials which are subject to certain constrains at the endpoints of a prescribed parametric interval and minimized in a certain sense. This result can be combined with subdivision technique to obtain a continuous piecewise approximation to a rational curve.
基金Supported by Shandong Province Higher Educational Science and Technology Program(No.J12LN34)Shandong Ji'nan College and Institute Independent Innovation Project(No.201303011,No.201303021,No.201303016)
文摘This paper discusses the problem that constructing a curve to satisfy the given endpoint constraints and chord-length parameters. Based on the research of Lu, the curve construction method for the entire tangent angles region (α0, α1)∈(-r, r)×(-r, r) is given. Firstly, to ensure the weights are always positive, the three characteristics of cubic rational Bezier curve is proved, then the segment construction idea for the other tangent angles are presented in view of the three characteristics. The curve constructed with the new method satisfies the endpoint constraint and chord-length parameters, it's G1 continuous in every segment curve, and the shapes of the curve are well.
基金The research is supported by Project of National Natural Science Foundation of China(30571455)and National "948" Project(2005-4-62)
文摘This paper describes a new method for simulation of the cross section shape of log. The self-developed MQK3102 log shape recognizing machine was used to acquire the finite discrete sampling points on the cross section of log and those points were fitted with the quadratic B-spline parametric curve. This method can clearly stimulate the real shape of the log cross section and is characterized by limited sampling points and high speed computing. The computed result of the previous curve does not affect the next one, which may avoid the graphic distortion caused by the accumulative error. The method can be used to simulate the whole body shape of log approximately by sampling the cross sections along the length direction of log, thus providing a reference model for optimum saw cutting of log.
基金The Doctoral Fund of Ministry of Education of China(No.20090092110052)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.12KJA460002)College Industrialization Project of Jiangsu Province(No.JHB2012-21)
文摘To realize the high precision and real-time interpolation of the NURBS (non-uniform rational B-spline) curve, a kinetic model based on the modified sigmoid function is proposed. The constraints of maximum feed rate, chord error, curvature radius and interpolator cycle are discussed. This kinetic model reduces the cubic polynomial S-shape model and the trigonometry function S-shape model from 15 sections into 3 sections under the precondition of jerk, acceleration and feedrate continuity. Then an optimized Adams algorithm using the difference quotient to replace the derivative is presented to calculate the interpolator cycle parameters. The higher-order derivation in the Taylor expansion algorithm can be avoided by this algorithm. Finally, the simplified design is analyzed by reducing the times of computing the low-degree zero-value B-spline basis function and the simplified De Boor-Cox recursive algorithm is proposed. The simulation analysis indicates that by these algorithms, the feed rate is effectively controlled according to tool path. The calculated amount is decreased and the calculated speed is increased while the machining precision is ensured. The experimental results show that the target parameter can be correctly calculated and these algorithms can be applied to actual systems.
基金Thanks for the reviewers’comments to improve the paper.This research was supported by the National Nature Science Foundation of China under Grant Nos.61772163,61761136010,61472111,Zhejiang Provincial Natural Science Foundation of China under Grant Nos.LR16F020003,LQ16F020005.
文摘In this paper,we propose an efficient method to construct energy-minimizing B-spline curves by using discrete mask method.The linear relations between control points are firstly derived for different energy-minimization problems,then the construction of B-spline curve with minimal internal energy can be addressed by solving a sparse linear system.The existence and uniqueness of the solution for the linear system are also proved.Experimental results show the efficiency of the proposed approach,and its application in 1 G blending curve construction is also presented.
文摘Parametric curves such as Bézier and B-splines, originally developedfor the design of automobile bodies, are now also used in image processing andcomputer vision. For example, reconstructing an object shape in an image,including different translations, scales, and orientations, can be performedusing these parametric curves. For this, Bézier and B-spline curves can be generatedusing a point set that belongs to the outer boundary of the object. Theresulting object shape can be used in computer vision fields, such as searchingand segmentation methods and training machine learning algorithms. Theprerequisite for reconstructing the shape with parametric curves is to obtainsequentially the points in the point set. In this study, a novel algorithm hasbeen developed that sequentially obtains the pixel locations constituting theouter boundary of the object. The proposed algorithm, unlike the methods inthe literature, is implemented using a filter containing weights and an outercircle surrounding the object. In a binary format image, the starting point ofthe tracing is determined using the outer circle, and the next tracing movementand the pixel to be labeled as the boundary point is found by the filter weights.Then, control points that define the curve shape are selected by reducing thenumber of sequential points. Thus, the Bézier and B-spline curve equationsdescribing the shape are obtained using these points. In addition, differenttranslations, scales, and rotations of the object shape are easily provided bychanging the positions of the control points. It has also been shown that themissing part of the object can be completed thanks to the parametric curves.
基金Supported by the National Natural Science Foundation of China (60873111, 60933007)
文摘Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curve. Then this method can be easily extended to the approximate merging problem of multiple B-spline curves and of two adjacent surfaces. After minimizing the approximate error between curves or surfaces, the approximate merging problem can be transformed into equations solving. We express both the new control points and the precise error of approximation explicitly in matrix form. Based on homogeneous coordinates and quadratic programming, we also introduce a new framework for approximate merging of two adjacent NURBS curves. Finally, several numerical examples demonstrate the effectiveness and validity of the algorithm.