期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
THE ASYMPTOTIC FORMULA OF THE ORTHOGONAL RATIONAL FUNCTION ON THE UNIT CIRCLE
1
作者 Zhu Laiyi People’s Universityy of China, China 《Analysis in Theory and Applications》 1993年第2期24-36,共13页
In this paper we obtained the asymptotic formula of the orthogonal rational function on the unit circle with respect to the weight function μ(z) with preasigned poles, which are in the exterior of the unit disk.
关键词 PRO rational THE ASYMPTOTIC FORMULA OF THE orthogonal rational FUNCTION ON THE UNIT CIRCLE 六丁
下载PDF
Mathematical theory of signal analysis vs. complex analysis method of harmonic analysis
2
作者 QIAN Tao ZHANG Li-ming 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2013年第4期505-530,共26页
We present recent work of harmonic and signal analysis based on the complex Hardy space approach.
关键词 Mobius transform Blaschke form mono-component Hardy space adaptive Fourier decomposi-tion rational approximation rational orthogonal system time-frequency distribution digital signal processing uncertainty principle higher dimensional signal analysis in several complex variables and the Clifford algebrasetting.
下载PDF
Positive-instantaneous frequency and approximation 被引量:2
3
作者 Tao QIAN 《Frontiers of Mathematics in China》 SCIE CSCD 2022年第3期337-371,共35页
Positive-instantaneous frequency representation for transient signals has always been a great concern due to its theoretical and practical importance,although the involved concept itself is paradoxical.The desire and ... Positive-instantaneous frequency representation for transient signals has always been a great concern due to its theoretical and practical importance,although the involved concept itself is paradoxical.The desire and practice of uniqueness of such frequency representation(decomposition)raise the related topics in approximation.During approximately the last two decades there has formulated a signal decomposition and reconstruction method rooted in harmonic and complex analysis giving rise to the desired signal representations.The method decomposes any signal into a few basic signals that possess positive instantaneous frequencies.The theory has profound relations to classical mathematics and can be generalized to signals defined in higher dimensional manifolds with vector and matrix values,and in particular,promotes kernel approximation for multi-variate functions.This article mainly serves as a survey.It also gives two important technical proofs of which one for a general convergence result(Theorem 3.4),and the other for necessity of multiple kernel(Lemma 3.7).Expositorily,for a given real-valued signal f one can associate it with a Hardy space function F whose real part coincides with f.Such function F has the form F=f+iHf,where H stands for the Hilbert transformation of the context.We develop fast converging expansions of F in orthogonal terms of the form F=∑k=1^(∞)c_(k)B_(k),where B_(k)'s are also Hardy space functions but with the additional properties B_(k)(t)=ρ_(k)(t)e^(iθ_(k)(t)),ρk≥0,θ′_(k)(t)≥0,a.e.The original real-valued function f is accordingly expanded f=∑k=1^(∞)ρ_(k)(t)cosθ_(k)(t)which,besides the properties ofρ_(k)andθ_(k)given above,also satisfies H(ρ_(k)cosθ_(k))(t)ρ_(k)(t)sinρ_(k)(t).Real-valued functions f(t)=ρ(t)cosθ(t)that satisfy the conditionρ≥0,θ′(t)≥0,H(ρcosθ)(t)=ρ(t)sinθ(t)are called mono-components.If f is a mono-component,then the phase derivativeθ′(t)is defined to be instantaneous frequency of f.The above described positive-instantaneous frequency expansion is a generalization of the Fourier series expansion.Mono-components are crucial to understand the concept instantaneous frequency.We will present several most important mono-component function classes.Decompositions of signals into mono-components are called adaptive Fourier decompositions(AFDs).Wc note that some scopes of the studies on the ID mono-components and AFDs can be extended to vector-valued or even matrix-valued signals defined on higher dimensional manifolds.We finally provide an account of related studies in pure and applied mathematics. 展开更多
关键词 Möbius transform blaschke product mono-component hilbert transform hardy space inner and outer functions adaptive fourier decomposition rational orthogonal system nevanlinna factorization beurling-lax theorem reproducing kernel hilbert space several complex variables Clifford alge-bra pre-orthogonal AFD
原文传递
A class of iterative greedy algorithms related to Blaschke product
4
作者 Tao Qian Lihui Tan Jiecheng Chen 《Science China Mathematics》 SCIE CSCD 2021年第12期2703-2718,共16页
Mobius transforms,Blaschke products and starlike functions as typical conformal mappings of one complex variable give rise to nonlinear phases with non-negative phase derivatives with the latter being de ned by instan... Mobius transforms,Blaschke products and starlike functions as typical conformal mappings of one complex variable give rise to nonlinear phases with non-negative phase derivatives with the latter being de ned by instantaneous frequencies of signals they represent.The positive analytic phase derivative has been a widely interested subject among signal analysts(see Gabor(1946)).Research results of the positive analytic frequency and applications appears in the literature since the middle of the 20th century.Of the positive frequency study a directly related topic is positive frequency decomposition of signals.The mainly focused methods of such decompositions include the maximal selection method and the Blaschke product unwinding method,and joint use of the mentioned methods.In this paper,we propose a class of iterative greedy algorithms based on the Blaschke product and adaptive Fourier decomposition.It generalizes the Blaschke product unwinding method by subtracting constants other than the averages of the remaining functions,aiming at larger winding numbers,and subtracting n-Blaschke forms of the remaining functions,aiming at generating larger numbers of zero-crossings,to fast reduce energy of the remaining terms.Furthermore,we give a comprehensive and rigorous proof of the converging rate in terms of the zeros of the remainders.Finite Blaschke product methods are proposed to avoid the in nite phase derivative dilemma,and to avoid the computational diculties. 展开更多
关键词 complex Hardy space Mobius transform Blaschke product rational orthogonal system Takenaka-Malmquist system mono-component adaptive Fourier decomposition unwinding Blaschke expansion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部