The problem of parametric speed approximation of a rational curve is raised in this paper. Offset curves are widely used in various applications. As for the reason that in most cases the offset curves do not preserve ...The problem of parametric speed approximation of a rational curve is raised in this paper. Offset curves are widely used in various applications. As for the reason that in most cases the offset curves do not preserve the same polynomial or rational polynomial representations, it arouses difficulty in applications. Thus approximation methods have been introduced to solve this problem. In this paper, it has been pointed out that the crux of offset curve approximation lies in the approximation of parametric speed. Based on the Jacobi polynomial approximation theory with endpoints interpolation, an algebraic rational approximation algorithm of offset curve, which preserves the direction of normal, is presented.展开更多
By using some elementary inequalities, authors in this paper makes further improvement for estimating the heights of Bézier curve and rational Bézier curve. And the termination criterion for subdivision of t...By using some elementary inequalities, authors in this paper makes further improvement for estimating the heights of Bézier curve and rational Bézier curve. And the termination criterion for subdivision of the rational Bézier curve is also improved. The conclusion of the extreme value problem is thus further confirmed.展开更多
Based on rational Bézier curves given by Ron Goldman, a new fractional rational Bézier curve was first defined in terms of fractional Bernstein bases. Moreover, some basic properties were dicussed and a theo...Based on rational Bézier curves given by Ron Goldman, a new fractional rational Bézier curve was first defined in terms of fractional Bernstein bases. Moreover, some basic properties were dicussed and a theorem connected to Poisson curves was obtained. Some examples in this paper were given by the visual results.展开更多
Adjusting weights as a shape control tool in rational B6zier curve design is not easy because the weights have a global in- fluence. The curve could not approximate control polygon satisfactorily by an interactive man...Adjusting weights as a shape control tool in rational B6zier curve design is not easy because the weights have a global in- fluence. The curve could not approximate control polygon satisfactorily by an interactive manner. In order to produce a curve close enough to control polygon at every control vertex, an optimization model is established to minimize the distance between rational B6zier curve and its control points. This optimization problem is converted to a quadratic programming problem by separating and recombining the objective function. The new combined multi-objective optimization problem is reasonable and easy to solve. With an optimal parameter, the computing process is discussed. Comparative examples show that the designed curve is closer to control polygon and preserves the shape of the control polygon well.展开更多
This work presents the static and dynamic analyses of laminated doubly-curved shells and panels of revolution resting on Winkler-Pasternak elastic foundations using the Generalized Differential Quadrature (GDQ) method...This work presents the static and dynamic analyses of laminated doubly-curved shells and panels of revolution resting on Winkler-Pasternak elastic foundations using the Generalized Differential Quadrature (GDQ) method. The analyses are worked out considering the First-order Shear Deformation Theory (FSDT) for the above mentioned moderately thick structural elements. The effect of the shell curvatures is included from the beginning of the theory formulation in the kinematic model. The solutions are given in terms of generalized displacement components of points lying on the middle surface of the shell. Simple Rational Bézier curves are used to define the meridian curve of the revolution structures. The discretization of the system by means of the GDQ technique leads to a standard linear problem for the static analysis and to a standard linear eigenvalue problem for the dynamic analysis. Comparisons between the present formulation and the Reissner-Mindlin theory are presented. Furthermore, GDQ results are compared with those obtained by using commercial programs. Very good agreement is observed. Finally, new results are presented in order to investtigate the effects of the Winkler modulus, the Pasternak modulus and the inertia of the elastic foundation on the behavior of laminated shells of revolution.展开更多
In this paper a class of new inequalities about Bernstein polynomial is established. With these inequalities, the estimation of heights, the derivative bounds of Bézier curves and rational Bézier curves can ...In this paper a class of new inequalities about Bernstein polynomial is established. With these inequalities, the estimation of heights, the derivative bounds of Bézier curves and rational Bézier curves can be improved greatly.展开更多
To improve the innovation of agricultural machinery product styling,this paper proposes a shape structure behavior function(SSBF)model suitable for the industrial design field.The feature line evolution method combini...To improve the innovation of agricultural machinery product styling,this paper proposes a shape structure behavior function(SSBF)model suitable for the industrial design field.The feature line evolution method combining shape grammar and genetic algorithm was used for modelling the of the grader,which not only maintains the product style characteristics but also reflects the typical identification characteristics of the bionic prototype and produces a new product modelling scheme.By conducting cognitive and recognition experiments on product styling features,the ranking of product styling features and the contribution of each component to product styling were determined.The method of combining shape grammar and quadratic Bézier curve was used to express and encode feature lines,and genetic algorithm was used to evolve biomimetic forms to form product feature lines with typical biological morphological features;The extracted form bionic elements were integrated into the grader modelling design,and the interaction evaluation was carried out through the genetic algorithm evolution scheme.The basic form elements were extracted and analyzed,and the deduction rules were formulated and reorganized.The derived feature line geometric data considered the product’s image features and the bio-inspired prototype,which can be used for the follow-up guidance of industrial design schemes.展开更多
Using algebraic and geometric methods,functional relationships between a point on a conic segment and its corresponding parameter are derived when the conic segment is presented by a rational quadratic or cubic Bé...Using algebraic and geometric methods,functional relationships between a point on a conic segment and its corresponding parameter are derived when the conic segment is presented by a rational quadratic or cubic Bézier curve.That is,the inverse mappings of the mappings represented by the expressions of rational conic segments are given.These formulae relate some triangular areas or some angles,determined by the selected point on the curve and the control points of the curve,as well as by the weights of the rational Bézier curve.Also,the relationship can be expressed by the corresponding parametric angles of the selected point and two endpoints on the conic segment,as well as by the weights of the rational Bézier curve.These results are greatly useful for optimal parametrization,reparametrization,etc.,of rational Bézier curves and surfaces.展开更多
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312101) and the National Natural Science Foun-dation of China (Nos. 60373033 and 60333010)
文摘The problem of parametric speed approximation of a rational curve is raised in this paper. Offset curves are widely used in various applications. As for the reason that in most cases the offset curves do not preserve the same polynomial or rational polynomial representations, it arouses difficulty in applications. Thus approximation methods have been introduced to solve this problem. In this paper, it has been pointed out that the crux of offset curve approximation lies in the approximation of parametric speed. Based on the Jacobi polynomial approximation theory with endpoints interpolation, an algebraic rational approximation algorithm of offset curve, which preserves the direction of normal, is presented.
文摘By using some elementary inequalities, authors in this paper makes further improvement for estimating the heights of Bézier curve and rational Bézier curve. And the termination criterion for subdivision of the rational Bézier curve is also improved. The conclusion of the extreme value problem is thus further confirmed.
文摘Based on rational Bézier curves given by Ron Goldman, a new fractional rational Bézier curve was first defined in terms of fractional Bernstein bases. Moreover, some basic properties were dicussed and a theorem connected to Poisson curves was obtained. Some examples in this paper were given by the visual results.
基金Supported by Natural Science Foundation of China(No.10871208,No.60970097)
文摘Adjusting weights as a shape control tool in rational B6zier curve design is not easy because the weights have a global in- fluence. The curve could not approximate control polygon satisfactorily by an interactive manner. In order to produce a curve close enough to control polygon at every control vertex, an optimization model is established to minimize the distance between rational B6zier curve and its control points. This optimization problem is converted to a quadratic programming problem by separating and recombining the objective function. The new combined multi-objective optimization problem is reasonable and easy to solve. With an optimal parameter, the computing process is discussed. Comparative examples show that the designed curve is closer to control polygon and preserves the shape of the control polygon well.
文摘This work presents the static and dynamic analyses of laminated doubly-curved shells and panels of revolution resting on Winkler-Pasternak elastic foundations using the Generalized Differential Quadrature (GDQ) method. The analyses are worked out considering the First-order Shear Deformation Theory (FSDT) for the above mentioned moderately thick structural elements. The effect of the shell curvatures is included from the beginning of the theory formulation in the kinematic model. The solutions are given in terms of generalized displacement components of points lying on the middle surface of the shell. Simple Rational Bézier curves are used to define the meridian curve of the revolution structures. The discretization of the system by means of the GDQ technique leads to a standard linear problem for the static analysis and to a standard linear eigenvalue problem for the dynamic analysis. Comparisons between the present formulation and the Reissner-Mindlin theory are presented. Furthermore, GDQ results are compared with those obtained by using commercial programs. Very good agreement is observed. Finally, new results are presented in order to investtigate the effects of the Winkler modulus, the Pasternak modulus and the inertia of the elastic foundation on the behavior of laminated shells of revolution.
基金安徽省自然科学基金(the Natural Science Foundation of Anhui Province of China under Grant No.03046102)浙江教育厅资助科研课题(the Research Project of Department of Education of Zhejiang ProvinceChina under Grant No.20050718)
基金Supported by the National Natural Science Foundation of China (60303015,60333010).
文摘In this paper a class of new inequalities about Bernstein polynomial is established. With these inequalities, the estimation of heights, the derivative bounds of Bézier curves and rational Bézier curves can be improved greatly.
基金financially supported by the key research and development project of Shandong Province(Grant No.2021LYXT012)the independent innovation special project of Shandong Province-intelligent laser grader research and industrial demonstration(Grant No.2013CXC90203)。
文摘To improve the innovation of agricultural machinery product styling,this paper proposes a shape structure behavior function(SSBF)model suitable for the industrial design field.The feature line evolution method combining shape grammar and genetic algorithm was used for modelling the of the grader,which not only maintains the product style characteristics but also reflects the typical identification characteristics of the bionic prototype and produces a new product modelling scheme.By conducting cognitive and recognition experiments on product styling features,the ranking of product styling features and the contribution of each component to product styling were determined.The method of combining shape grammar and quadratic Bézier curve was used to express and encode feature lines,and genetic algorithm was used to evolve biomimetic forms to form product feature lines with typical biological morphological features;The extracted form bionic elements were integrated into the grader modelling design,and the interaction evaluation was carried out through the genetic algorithm evolution scheme.The basic form elements were extracted and analyzed,and the deduction rules were formulated and reorganized.The derived feature line geometric data considered the product’s image features and the bio-inspired prototype,which can be used for the follow-up guidance of industrial design schemes.
基金supported by the Foundation of State Key Basic Research 973 Item(Grant No.2004CB719400)the National Natural Science Foundation of China(Grant Nos.60373033&60333010)National Natural Science Foundation for Innovative Research Groups(Grant No.60021201).
文摘Using algebraic and geometric methods,functional relationships between a point on a conic segment and its corresponding parameter are derived when the conic segment is presented by a rational quadratic or cubic Bézier curve.That is,the inverse mappings of the mappings represented by the expressions of rational conic segments are given.These formulae relate some triangular areas or some angles,determined by the selected point on the curve and the control points of the curve,as well as by the weights of the rational Bézier curve.Also,the relationship can be expressed by the corresponding parametric angles of the selected point and two endpoints on the conic segment,as well as by the weights of the rational Bézier curve.These results are greatly useful for optimal parametrization,reparametrization,etc.,of rational Bézier curves and surfaces.