The composition of cement raw materials was detected by near-infrared spectroscopy.It was found that the BiPLS-SiPLS method selected the NIR spectral band of cement raw materials,and the partial least squares regressi...The composition of cement raw materials was detected by near-infrared spectroscopy.It was found that the BiPLS-SiPLS method selected the NIR spectral band of cement raw materials,and the partial least squares regression algorithm was adopted to establish a quantitative correction model of cement raw materials with good prediction effect.The root-mean-square errors of SiO_(2),Al_(2)O_(3),Fe_(2)O_(3) and CaO calibration were 0.142,0.072,0.034 and 0.188 correspondingly.The results show that the NIR spectroscopy method can detect the composition of cement raw meal rapidly and accurately,which provides a new perspective for the composition detection of cement raw meal.展开更多
The aim of the present paper was to investigate the possibility of utilizing Construction and Demolition (C&D) wastes as substitutes of Portland cement raw meal. The C&D wastes that were so used, were the Recycled...The aim of the present paper was to investigate the possibility of utilizing Construction and Demolition (C&D) wastes as substitutes of Portland cement raw meal. The C&D wastes that were so used, were the Recycled Concrete Aggregates (RCA) and the Recycled Masonry Aggregates (RMA) derived from demolished buildings in Attica region, Greece. RCA and RMA samples were selected because of their calcareous and siliceous origin respectively, which conformed the composition of the ordinary Portland cement raw meal. For that reason, six samples of cement raw meals were prepared: one with ordinary raw materials, as a reference sample, and five by mixing the reference sample with RCA and RMA in appropriate proportions. The effect on the reactivity of the generated mixtures, was evaluated on the basis of the free lime content (fCaO) in the mixtures sintered at 1350℃, 1400℃ and 1450℃. Test showed that the added recycled aggregates improved the burnability of the cement raw meal without affecting negatively the cement clinker properties. Moreover, the formation of the major components (C3S1 C2S1 C3A and C4AF) of the produced clinkers (sintered at 1450℃) was corroborated by X-Ray Diffraction (XRD).展开更多
基金Funded by the National Natural Science Foundation of China (No. 62073153)The Major Scientific and Technological Innovation Projects in Shandong Province (No.2019JZZY010448)The Key Research and Development Plan of Shandong Province of China (No.2019GSF109018)。
文摘The composition of cement raw materials was detected by near-infrared spectroscopy.It was found that the BiPLS-SiPLS method selected the NIR spectral band of cement raw materials,and the partial least squares regression algorithm was adopted to establish a quantitative correction model of cement raw materials with good prediction effect.The root-mean-square errors of SiO_(2),Al_(2)O_(3),Fe_(2)O_(3) and CaO calibration were 0.142,0.072,0.034 and 0.188 correspondingly.The results show that the NIR spectroscopy method can detect the composition of cement raw meal rapidly and accurately,which provides a new perspective for the composition detection of cement raw meal.
文摘The aim of the present paper was to investigate the possibility of utilizing Construction and Demolition (C&D) wastes as substitutes of Portland cement raw meal. The C&D wastes that were so used, were the Recycled Concrete Aggregates (RCA) and the Recycled Masonry Aggregates (RMA) derived from demolished buildings in Attica region, Greece. RCA and RMA samples were selected because of their calcareous and siliceous origin respectively, which conformed the composition of the ordinary Portland cement raw meal. For that reason, six samples of cement raw meals were prepared: one with ordinary raw materials, as a reference sample, and five by mixing the reference sample with RCA and RMA in appropriate proportions. The effect on the reactivity of the generated mixtures, was evaluated on the basis of the free lime content (fCaO) in the mixtures sintered at 1350℃, 1400℃ and 1450℃. Test showed that the added recycled aggregates improved the burnability of the cement raw meal without affecting negatively the cement clinker properties. Moreover, the formation of the major components (C3S1 C2S1 C3A and C4AF) of the produced clinkers (sintered at 1450℃) was corroborated by X-Ray Diffraction (XRD).