Based on wireless sensor networks, a physiological signal acquisition system is proposed. The system is used in classroom education in order to understand the physiological changes in the students. In the system,the b...Based on wireless sensor networks, a physiological signal acquisition system is proposed. The system is used in classroom education in order to understand the physiological changes in the students. In the system,the biological electrical signal related to student attention and emotion states can be measured by electrocardiography signals. The bioelectrical signal is digitalized at a 200 Hz sampling rate and is transmitted by the ZigBee protocol. Simultaneously, the Bluetooth technology is also embedded in the nodes so as to meet the high sampling rate and the high-bandwidth transmission. The system can implement the monitoring tasks for 30 students, and the experimental results of using the system in the classroom are proposed. Finally, the applications of wireless sensor networks used in education is also discussed.展开更多
The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction findin...The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.展开更多
Underwater acoustic sensor networks (UASNs) are often used for environmental and industrial sensing in undersea/ocean space, therefore, these networks are also named underwater wireless sensor networks (UWSNs). Underw...Underwater acoustic sensor networks (UASNs) are often used for environmental and industrial sensing in undersea/ocean space, therefore, these networks are also named underwater wireless sensor networks (UWSNs). Underwater sensor networks are different from other sensor networks due to the acoustic channel used in their physical layer, thus we should discuss about the specific features of these underwater networks such as acoustic channel modeling and protocol design for different layers of open system interconnection (OSI) model. Each node of these networks as a sensor needs to exchange data with other nodes;however, complexity of the acoustic channel makes some challenges in practice, especially when we are designing the network protocols. Therefore based on the mentioned cases, we are going to review general issues of the design of an UASN in this paper. In this regard, we firstly describe the network architecture for a typical 3D UASN, then we review the characteristics of the acoustic channel and the corresponding challenges of it and finally, we discuss about the different layers e.g. MAC protocols, routing protocols, and signal processing for the application layer of UASNs.展开更多
This paper presents a low?complexity method for the direction?of?arrival(DOA)estimation of noncircular signals for coprime sensor arrays.The noncircular property is exploited to improve the performance of DOA estimati...This paper presents a low?complexity method for the direction?of?arrival(DOA)estimation of noncircular signals for coprime sensor arrays.The noncircular property is exploited to improve the performance of DOA estimation.To reduce the computational complexity,the rotational invariance propagator method(RIPM)is included in the algorithm.First,the extended array output is reconstructed by combining the array output and its conjugated counterpart.Then,the RIPM is utilized to obtain two sets of DOA estimates for two subarrays.Finally,the true DOAs are estimated by combining the consistent results of the two subarrays.This illustrates the potential gain that both noncircularity and coprime arrays provide when considered together.The proposed algorithm has a lower computational complexity and a better DOA estimation performance than the standard estimation of signal parameters by the rotational invariance technique and Capon algorithm.Numerical simulation results illustrate the effectiveness and superiority of the proposed algorithm.展开更多
The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random t...The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result,the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated,and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures.展开更多
As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery...As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement.展开更多
A study is given on the application of BP neural network (BPNN) in sensorfailure detection in control systems, and on the networ architecture desgn, the redun-dancy,the quickness and the insensitivity to sensor noise ...A study is given on the application of BP neural network (BPNN) in sensorfailure detection in control systems, and on the networ architecture desgn, the redun-dancy,the quickness and the insensitivity to sensor noise of the BPNN based sensor detec-tion methed. Besules, an exploration is made into tbe factors accounting for the quality ofsignal recovery for failed sensor using BPNN. The results reveal clearly that BPNN can besuccessfully used in sensor failure detection and data recovery.展开更多
This paper proposes a sensor failure detection method based on artificial neural network and signal processing,in comparison with other methods,which does not need any redundancy information among sensor outputs and d...This paper proposes a sensor failure detection method based on artificial neural network and signal processing,in comparison with other methods,which does not need any redundancy information among sensor outputs and divides the output of a sensor into'Signal dominant component'and'Noise dominant component'because the pattern of sensor failure often appears in the'Noise dominant component'.With an ARMA model built for'Noise dominant component'using artificial neural network,such sensor failures as bias failure,hard failure,drift failure,spike failure and cyclic failure may be detected through residual analysis,and the type of sensor failure can be indicated by an appropriate indicator.The failure detection procedure for a temperature sensor in a hovercraft engine is simulated to prove the applicability of the method proposed in this paper.展开更多
The widely used sensitive elements of humidity sensors can be divided into 3 types,i.e.,resistor,capacitor,and electrolyte.Humidity sensors consisting of these sensitive elements have corresponding signal processing c...The widely used sensitive elements of humidity sensors can be divided into 3 types,i.e.,resistor,capacitor,and electrolyte.Humidity sensors consisting of these sensitive elements have corresponding signal processing circuit unique to each type of sensitive elements.This paper presents an ispPAC (in-system programmable Programmable Analog Circuit) -based humidity sensor signal processing circuit designed with software method and implemented with in-system programmable simulators.Practical operation shows that humidity sensor signal processing circuits of this kind,exhibit stable and reliable performance.展开更多
The application of Global Navigation Satellite Systems(GNSSs)in the intelligent railway systems is rapidly developing all over the world.With the GNSs-based train positioning and moving state perception,the autonomy a...The application of Global Navigation Satellite Systems(GNSSs)in the intelligent railway systems is rapidly developing all over the world.With the GNSs-based train positioning and moving state perception,the autonomy and flexibility of a novel train control system can be greatly enhanced over the existing solutions relying on the track-side facilities.Considering the safety critical features of the railway signaling applications,the GNSS stand-alone mode may not be sufficient to satisfy the practical requirements.In this paper,the key technologies for applying GNSS in novel train-centric railway signaling systems are investigated,including the multi-sensor data fusion,Virtual Balise(VB)capturing and messaging,train integrity monitoring and system performance evaluation.According to the practical characteristics of the novel train control system under the moving block mode,the details of the key technologies are introduced.Field demonstration results of a novel train control system using the presented technologies under the practical railway operation conditions are presented to illustrate the achievable performance feature of autonomous train state perception using BeiDou Navigation Satellite System(BDS)and related solutions.It reveals the great potentials of these key technologies in the next generation train control system and other GNSS-based railway implementations.展开更多
Aiming at the problem that indoor positioning technology based on wireless ultra-wideband pulse technology is susceptible to non-line-of-sight effects and multipath effects in confined spaces and weak signal environme...Aiming at the problem that indoor positioning technology based on wireless ultra-wideband pulse technology is susceptible to non-line-of-sight effects and multipath effects in confined spaces and weak signal environments,a high-precision positioning system based on UWB and IMU in a confined environment is designed.The STM32 chip is used as the main control,and the data information of IMU and UWB is fused by the fusion filtering algorithm.Finally,the real-time information of the positioning is transmitted to the host computer and the cloud.The experimental results show that the positioning accuracy and positioning stability of the system have been improved in the non-line-of-sight case of closed environment.The system has high positioning accuracy in a closed environment,and the components used are consumer-grade,which has strong practicability.展开更多
基金The National Natural Science Foundation of China(No.60775057)
文摘Based on wireless sensor networks, a physiological signal acquisition system is proposed. The system is used in classroom education in order to understand the physiological changes in the students. In the system,the biological electrical signal related to student attention and emotion states can be measured by electrocardiography signals. The bioelectrical signal is digitalized at a 200 Hz sampling rate and is transmitted by the ZigBee protocol. Simultaneously, the Bluetooth technology is also embedded in the nodes so as to meet the high sampling rate and the high-bandwidth transmission. The system can implement the monitoring tasks for 30 students, and the experimental results of using the system in the classroom are proposed. Finally, the applications of wireless sensor networks used in education is also discussed.
基金supported by the National Natural Science Foundation of China (61102106)the Fundamental Research Funds for the Central Universities (HEUCF1208 HEUCF100801)
文摘The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.
文摘Underwater acoustic sensor networks (UASNs) are often used for environmental and industrial sensing in undersea/ocean space, therefore, these networks are also named underwater wireless sensor networks (UWSNs). Underwater sensor networks are different from other sensor networks due to the acoustic channel used in their physical layer, thus we should discuss about the specific features of these underwater networks such as acoustic channel modeling and protocol design for different layers of open system interconnection (OSI) model. Each node of these networks as a sensor needs to exchange data with other nodes;however, complexity of the acoustic channel makes some challenges in practice, especially when we are designing the network protocols. Therefore based on the mentioned cases, we are going to review general issues of the design of an UASN in this paper. In this regard, we firstly describe the network architecture for a typical 3D UASN, then we review the characteristics of the acoustic channel and the corresponding challenges of it and finally, we discuss about the different layers e.g. MAC protocols, routing protocols, and signal processing for the application layer of UASNs.
基金supported by the National Natural Science Foundations of China (Nos.61371169,61601167, 61601504)the Natural Science Foundation of Jiangsu Province (No.BK20161489)+1 种基金the Open Research Fund of State Key Laboratory of Millimeter Waves, Southeast University (No. K201826)the Fundamental Research Funds for the Central Universities (No. NE2017103)
文摘This paper presents a low?complexity method for the direction?of?arrival(DOA)estimation of noncircular signals for coprime sensor arrays.The noncircular property is exploited to improve the performance of DOA estimation.To reduce the computational complexity,the rotational invariance propagator method(RIPM)is included in the algorithm.First,the extended array output is reconstructed by combining the array output and its conjugated counterpart.Then,the RIPM is utilized to obtain two sets of DOA estimates for two subarrays.Finally,the true DOAs are estimated by combining the consistent results of the two subarrays.This illustrates the potential gain that both noncircularity and coprime arrays provide when considered together.The proposed algorithm has a lower computational complexity and a better DOA estimation performance than the standard estimation of signal parameters by the rotational invariance technique and Capon algorithm.Numerical simulation results illustrate the effectiveness and superiority of the proposed algorithm.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61372156 and 61405053)the Natural Science Foundation of Zhejiang Province of China(Grant No.LZ13F04001)
文摘The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result,the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated,and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z433)Hunan Provincial Natural Science Foundation of China (Grant No. 09JJ8005)Scientific Research Foundation of Graduate School of Beijing University of Chemical and Technology,China (Grant No. 10Me002)
文摘As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement.
文摘A study is given on the application of BP neural network (BPNN) in sensorfailure detection in control systems, and on the networ architecture desgn, the redun-dancy,the quickness and the insensitivity to sensor noise of the BPNN based sensor detec-tion methed. Besules, an exploration is made into tbe factors accounting for the quality ofsignal recovery for failed sensor using BPNN. The results reveal clearly that BPNN can besuccessfully used in sensor failure detection and data recovery.
文摘This paper proposes a sensor failure detection method based on artificial neural network and signal processing,in comparison with other methods,which does not need any redundancy information among sensor outputs and divides the output of a sensor into'Signal dominant component'and'Noise dominant component'because the pattern of sensor failure often appears in the'Noise dominant component'.With an ARMA model built for'Noise dominant component'using artificial neural network,such sensor failures as bias failure,hard failure,drift failure,spike failure and cyclic failure may be detected through residual analysis,and the type of sensor failure can be indicated by an appropriate indicator.The failure detection procedure for a temperature sensor in a hovercraft engine is simulated to prove the applicability of the method proposed in this paper.
文摘The widely used sensitive elements of humidity sensors can be divided into 3 types,i.e.,resistor,capacitor,and electrolyte.Humidity sensors consisting of these sensitive elements have corresponding signal processing circuit unique to each type of sensitive elements.This paper presents an ispPAC (in-system programmable Programmable Analog Circuit) -based humidity sensor signal processing circuit designed with software method and implemented with in-system programmable simulators.Practical operation shows that humidity sensor signal processing circuits of this kind,exhibit stable and reliable performance.
基金supported by National Key Research and Development Program of China(2022YFB4300501)National Natural Science Foundation of China(62027809,U2268206,T2222015).
文摘The application of Global Navigation Satellite Systems(GNSSs)in the intelligent railway systems is rapidly developing all over the world.With the GNSs-based train positioning and moving state perception,the autonomy and flexibility of a novel train control system can be greatly enhanced over the existing solutions relying on the track-side facilities.Considering the safety critical features of the railway signaling applications,the GNSS stand-alone mode may not be sufficient to satisfy the practical requirements.In this paper,the key technologies for applying GNSS in novel train-centric railway signaling systems are investigated,including the multi-sensor data fusion,Virtual Balise(VB)capturing and messaging,train integrity monitoring and system performance evaluation.According to the practical characteristics of the novel train control system under the moving block mode,the details of the key technologies are introduced.Field demonstration results of a novel train control system using the presented technologies under the practical railway operation conditions are presented to illustrate the achievable performance feature of autonomous train state perception using BeiDou Navigation Satellite System(BDS)and related solutions.It reveals the great potentials of these key technologies in the next generation train control system and other GNSS-based railway implementations.
文摘Aiming at the problem that indoor positioning technology based on wireless ultra-wideband pulse technology is susceptible to non-line-of-sight effects and multipath effects in confined spaces and weak signal environments,a high-precision positioning system based on UWB and IMU in a confined environment is designed.The STM32 chip is used as the main control,and the data information of IMU and UWB is fused by the fusion filtering algorithm.Finally,the real-time information of the positioning is transmitted to the host computer and the cloud.The experimental results show that the positioning accuracy and positioning stability of the system have been improved in the non-line-of-sight case of closed environment.The system has high positioning accuracy in a closed environment,and the components used are consumer-grade,which has strong practicability.