Accurate calculations of travel times and raypaths of reflection waves are important for reflection travel time tomography.The multistage shortest path method(MSPM)and multistage fast marching method(MFMM)have been wi...Accurate calculations of travel times and raypaths of reflection waves are important for reflection travel time tomography.The multistage shortest path method(MSPM)and multistage fast marching method(MFMM)have been widely used in reflection wave raytracing,and both of them are characterized by high efficiency and ac-curacy.However,the MSPM does not strictly follow Snell's law at the interface because it treats the interface point as a sub-source,resulting in a decrease in accuracy.The MFMM achieves high accuracy by solving the Eikonal equation in local triangular mesh.However,the implementation process is complex.Here we propose a new method which uses linear interpolation to compute the incident travel time of interface points and then using Snell's law to compute the reflection travel time of grid points just above the interface.Our new method is much simpler than the MFMM;furthermore,numerical simulations show that the accuracy of the MFMM and our new method are basically the same,thus the reflection tomography algorithms which use our new method are easier to implement without decreasing accuracy.Besides,our new method can be extended easily to other grid-based raytracing methods.展开更多
Terahertz(THz)communications are envisioned as a key technology for the sixth-generation wireless communication system(6G).However,it is not practical to perform large-scale channel measurements with high degrees of f...Terahertz(THz)communications are envisioned as a key technology for the sixth-generation wireless communication system(6G).However,it is not practical to perform large-scale channel measurements with high degrees of freedom at THz frequency band.This makes empirical or stochastic modeling approaches relying on measurements no longer stand.In order to break through the bottleneck of scarce fulldimensional channel sounding measurements,this paper presents a novel paradigm for THz channel modeling towards 6G.With the core of high-performance ray tracing(RT),the presented paradigm requires merely quite limited channel sounding to calibrate the geometry and material electromagnetic(EM)properties of the three-dimensional(3D)environment model in the target scenarios.Then,through extensive RT simulations,the parameters extracted from RT simulations can be fed into either ray-based novel stochastic channel models or cluster-based standard channel model families.Verified by RT simulations,these models can generate realistic channels that are valuable for the design and evaluation of THz systems.Representing two ends of 6G THz use cases from microscopy to macroscopy,case studies are made for close-proximity communications,wireless connections on a desktop,and smart rail mobility,respectively.Last but not least,new concerns on channel modeling resulting from distinguishing features of THz wave are discussed regarding propagation,antenna array,and device aspects,respectively.展开更多
Reverse Time Migration(RTM)Surface Ofset Gathers(SOGs)are demonstrated to deliver more superior residual dip information than ray-based approaches.It appears more powerful in complex geological settings,such as salt a...Reverse Time Migration(RTM)Surface Ofset Gathers(SOGs)are demonstrated to deliver more superior residual dip information than ray-based approaches.It appears more powerful in complex geological settings,such as salt areas.Still,the computational cost of constructing RTM SOGs is a big challenge in applying it to 3D feld data.To tackle this challenge,we propose a novel method using dips of local events as a guide for RTM gather interpolation.The residual-dip information of the SOGs is created by connecting local events from depth-domain to time-domain via ray tracing.The proposed method is validated by a synthetic experiment and a feld example.It mitigates the computational cost by an order of magnitude while producing comparable results as fully computed RTM SOGs.展开更多
A modified random walk model for human motion is proposed to investigate characteristics of 60GHz indoor office propagation.Compared with the classic random walk model,the movement tendency in the walking process is t...A modified random walk model for human motion is proposed to investigate characteristics of 60GHz indoor office propagation.Compared with the classic random walk model,the movement tendency in the walking process is taken into account in the modified model.Based on the proposed model,path gains of the propagation environment are simulated under a variety of settings by using a ray tracing method.Simulation results and analysis show that human motion is a major source of disturbance to the indoor office propagation and results in performance degradation in some areas.展开更多
New approaches for testing of autonomous driving functions are using Virtual Reality (VR) to analyze the behavior of automated vehicles in various scenarios. The real time simulation of the environment sensors is stil...New approaches for testing of autonomous driving functions are using Virtual Reality (VR) to analyze the behavior of automated vehicles in various scenarios. The real time simulation of the environment sensors is still a challenge. In this paper, the conception, development and validation of an automotive radar raw data sensor model is shown. For the implementation, the Unreal VR engine developed by Epic Games is used. The model consists of a sending antenna, a propagation and a receiving antenna model. The microwave field propagation is simulated by a raytracing approach. It uses the method of shooting and bouncing rays to cover the field. A diffused scattering model is implemented to simulate the influence of rough structures on the reflection of rays. To parameterize the model, simple reflectors are used. The validation is done by a comparison of the measured radar patterns of pedestrians and cyclists with simulated values. The outcome is that the developed model shows valid results, even if it still has deficits in the context of performance. It shows that the bouncing of diffuse scattered field can only be done once. This produces inadequacies in some scenarios. In summary, the paper shows a high potential for real time simulation of radar sensors by using ray tracing in a virtual reality.展开更多
在3DS MAX 中,物体材质的效果对于一个动画的好坏起着很大的作用,而在3DS MAX的材质编辑器中材质又扮演着重要的角色。现在制作一个新产品广告,为了突出产品的名称或者强调其它的功能,就可以用放大镜功能。要制作放大效果有许多技巧,由...在3DS MAX 中,物体材质的效果对于一个动画的好坏起着很大的作用,而在3DS MAX的材质编辑器中材质又扮演着重要的角色。现在制作一个新产品广告,为了突出产品的名称或者强调其它的功能,就可以用放大镜功能。要制作放大效果有许多技巧,由于材质的不同,影响材质的真实度。下面我给大家介绍一种方便快捷的方法,就是运用M A X 的独特的光影追踪(RAYTRACE)材质,制作放大镜的放大效果。本例是模拟一个放大镜镜片球体。展开更多
Dust accumulation is one of the reasons for the performance degradation of concentrating photovoltaic and thermal(CPV/T) systems due to the deposition of dust particles with different compositions, shapes, sizes, and ...Dust accumulation is one of the reasons for the performance degradation of concentrating photovoltaic and thermal(CPV/T) systems due to the deposition of dust particles with different compositions, shapes, sizes, and masses. In this work, an optical model was developed to investigate the influence of the particle size, diameter, shape, and deposition density on the light concentration efficiency, using the Monte Carlo raytracing(MCRT) method in the Tracepro software. The triangular particles had a larger influence on the light ray deflection and energy flux degradation than the circular and square particles. An average increase in the dust density of 1 g/m^(2) decreased the light concentration efficiency of particles with sizes smaller than 50 μm and 60 μm by 3.31% and 3.26%, respectively. Furthermore, the effect of the incidence angle on the light concentration efficiency was considered at an angle less than 2°.展开更多
Hunga Tonga-Hunga Ha’apai climactic eruption on January 15,2022,released enormous energy that affected the ionosphere over the Pacific Rim.We analyzed ionospheric disturbance following volcanic eruptions using near-f...Hunga Tonga-Hunga Ha’apai climactic eruption on January 15,2022,released enormous energy that affected the ionosphere over the Pacific Rim.We analyzed ionospheric disturbance following volcanic eruptions using near-field(<1000 km),regional(1000–5000 km),and far-field(5000–12000 km) global positioning system(GPS) observations.The results indicate that the near-field ionospheric perturbation that occurred 8–15 min after the cataclysmic eruption was mainly derived from the shock wave(~1000 m/s) generated by the blast,while the low-frequency branch with long-distance propagation characteristics over the regional and the far-field was mainly associated with atmospheric Lamb waves(~330 m/s).Moreover,the amplitude of disturbance and background total electron content(TEC) are related proportionally.The intensity of the volcanic eruption and the background ionospheric conditions determine the magnitude of ionospheric responses.TEC perturbations were invisible on the reference days.Furthermore,the source location and onset time were calculated using the ray tracing technique,which confirms that the Tonga event triggered the ionospheric anomaly beyond the crater.Finally,the change in the frequency of the perturbations coincided with the arrival of the initial tsunami,implying the generation of a meteotsunami.展开更多
基金This research is jointly sponsored by National Natural Science Foundation of China(Grant No.U1901602)Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration Technology(Grant No.ZDSYS20190902093007855)+1 种基金Shenzhen Science and Technology Program(KQTD20170810111725321)This study is also sponsored by the China Earthquake Science Experiment Project of China Earthquake Administration(Grant No.2018CSES0101).
文摘Accurate calculations of travel times and raypaths of reflection waves are important for reflection travel time tomography.The multistage shortest path method(MSPM)and multistage fast marching method(MFMM)have been widely used in reflection wave raytracing,and both of them are characterized by high efficiency and ac-curacy.However,the MSPM does not strictly follow Snell's law at the interface because it treats the interface point as a sub-source,resulting in a decrease in accuracy.The MFMM achieves high accuracy by solving the Eikonal equation in local triangular mesh.However,the implementation process is complex.Here we propose a new method which uses linear interpolation to compute the incident travel time of interface points and then using Snell's law to compute the reflection travel time of grid points just above the interface.Our new method is much simpler than the MFMM;furthermore,numerical simulations show that the accuracy of the MFMM and our new method are basically the same,thus the reflection tomography algorithms which use our new method are easier to implement without decreasing accuracy.Besides,our new method can be extended easily to other grid-based raytracing methods.
基金supported by the Fundamental Research Funds for the Central Universities 2020JBZD005NSFC under Grant(61771036,61901029,U1834210,and 61725101)+4 种基金the State Key Laboratory of Rail Traffic Control and Safety(Contract No.RCS2020ZZ005)Beijing Jiaotong Universitythe ZTE CorporationState Key Laboratory of Mobile Network and Mobile Multimedia TechnologyBeijing Natural Science Foundation under Grant L201023。
文摘Terahertz(THz)communications are envisioned as a key technology for the sixth-generation wireless communication system(6G).However,it is not practical to perform large-scale channel measurements with high degrees of freedom at THz frequency band.This makes empirical or stochastic modeling approaches relying on measurements no longer stand.In order to break through the bottleneck of scarce fulldimensional channel sounding measurements,this paper presents a novel paradigm for THz channel modeling towards 6G.With the core of high-performance ray tracing(RT),the presented paradigm requires merely quite limited channel sounding to calibrate the geometry and material electromagnetic(EM)properties of the three-dimensional(3D)environment model in the target scenarios.Then,through extensive RT simulations,the parameters extracted from RT simulations can be fed into either ray-based novel stochastic channel models or cluster-based standard channel model families.Verified by RT simulations,these models can generate realistic channels that are valuable for the design and evaluation of THz systems.Representing two ends of 6G THz use cases from microscopy to macroscopy,case studies are made for close-proximity communications,wireless connections on a desktop,and smart rail mobility,respectively.Last but not least,new concerns on channel modeling resulting from distinguishing features of THz wave are discussed regarding propagation,antenna array,and device aspects,respectively.
基金This study is jointly supported by the National Key R&D Program of China(2017YFC1500303 and 2020YFA0710604)the Science Foundation of China University of Petroleum,Beijing(2462019YJRC007 and 2462020YXZZ047)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-05).
文摘Reverse Time Migration(RTM)Surface Ofset Gathers(SOGs)are demonstrated to deliver more superior residual dip information than ray-based approaches.It appears more powerful in complex geological settings,such as salt areas.Still,the computational cost of constructing RTM SOGs is a big challenge in applying it to 3D feld data.To tackle this challenge,we propose a novel method using dips of local events as a guide for RTM gather interpolation.The residual-dip information of the SOGs is created by connecting local events from depth-domain to time-domain via ray tracing.The proposed method is validated by a synthetic experiment and a feld example.It mitigates the computational cost by an order of magnitude while producing comparable results as fully computed RTM SOGs.
基金Supported by the National Natural Science Foundation of China(61172073)Program for New Century Excellent Talents of the Ministry of Education(NCET-12-0766)+1 种基金the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(2012D19)the Fundamental Research Funds for the Central Universities(2013JBZ001)
文摘A modified random walk model for human motion is proposed to investigate characteristics of 60GHz indoor office propagation.Compared with the classic random walk model,the movement tendency in the walking process is taken into account in the modified model.Based on the proposed model,path gains of the propagation environment are simulated under a variety of settings by using a ray tracing method.Simulation results and analysis show that human motion is a major source of disturbance to the indoor office propagation and results in performance degradation in some areas.
文摘New approaches for testing of autonomous driving functions are using Virtual Reality (VR) to analyze the behavior of automated vehicles in various scenarios. The real time simulation of the environment sensors is still a challenge. In this paper, the conception, development and validation of an automotive radar raw data sensor model is shown. For the implementation, the Unreal VR engine developed by Epic Games is used. The model consists of a sending antenna, a propagation and a receiving antenna model. The microwave field propagation is simulated by a raytracing approach. It uses the method of shooting and bouncing rays to cover the field. A diffused scattering model is implemented to simulate the influence of rough structures on the reflection of rays. To parameterize the model, simple reflectors are used. The validation is done by a comparison of the measured radar patterns of pedestrians and cyclists with simulated values. The outcome is that the developed model shows valid results, even if it still has deficits in the context of performance. It shows that the bouncing of diffuse scattered field can only be done once. This produces inadequacies in some scenarios. In summary, the paper shows a high potential for real time simulation of radar sensors by using ray tracing in a virtual reality.
文摘在3DS MAX 中,物体材质的效果对于一个动画的好坏起着很大的作用,而在3DS MAX的材质编辑器中材质又扮演着重要的角色。现在制作一个新产品广告,为了突出产品的名称或者强调其它的功能,就可以用放大镜功能。要制作放大效果有许多技巧,由于材质的不同,影响材质的真实度。下面我给大家介绍一种方便快捷的方法,就是运用M A X 的独特的光影追踪(RAYTRACE)材质,制作放大镜的放大效果。本例是模拟一个放大镜镜片球体。
基金supported by the National Natural Science Foundation of China(No.51766012)the Natural Science Foundation of Inner Mongolia(No.2019MS05025)+1 种基金the Inner Mongolia Science and Technology Major Project(No.2019ZD014)the Key Project of the ESI Discipline Development of Wuhan University of Technology(WUT Grant No.2017001)。
文摘Dust accumulation is one of the reasons for the performance degradation of concentrating photovoltaic and thermal(CPV/T) systems due to the deposition of dust particles with different compositions, shapes, sizes, and masses. In this work, an optical model was developed to investigate the influence of the particle size, diameter, shape, and deposition density on the light concentration efficiency, using the Monte Carlo raytracing(MCRT) method in the Tracepro software. The triangular particles had a larger influence on the light ray deflection and energy flux degradation than the circular and square particles. An average increase in the dust density of 1 g/m^(2) decreased the light concentration efficiency of particles with sizes smaller than 50 μm and 60 μm by 3.31% and 3.26%, respectively. Furthermore, the effect of the incidence angle on the light concentration efficiency was considered at an angle less than 2°.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42074024, 41890813 & 41976066)the Young Talent Promotion Project of the China Association for Science and Technology。
文摘Hunga Tonga-Hunga Ha’apai climactic eruption on January 15,2022,released enormous energy that affected the ionosphere over the Pacific Rim.We analyzed ionospheric disturbance following volcanic eruptions using near-field(<1000 km),regional(1000–5000 km),and far-field(5000–12000 km) global positioning system(GPS) observations.The results indicate that the near-field ionospheric perturbation that occurred 8–15 min after the cataclysmic eruption was mainly derived from the shock wave(~1000 m/s) generated by the blast,while the low-frequency branch with long-distance propagation characteristics over the regional and the far-field was mainly associated with atmospheric Lamb waves(~330 m/s).Moreover,the amplitude of disturbance and background total electron content(TEC) are related proportionally.The intensity of the volcanic eruption and the background ionospheric conditions determine the magnitude of ionospheric responses.TEC perturbations were invisible on the reference days.Furthermore,the source location and onset time were calculated using the ray tracing technique,which confirms that the Tonga event triggered the ionospheric anomaly beyond the crater.Finally,the change in the frequency of the perturbations coincided with the arrival of the initial tsunami,implying the generation of a meteotsunami.