GNSS( global navigation satellite systems) are unavailable in challenging environments such as urban canyon and indoor locations due to signal blocking and jamming. Camera / IMU( inertial measurement units) integrated...GNSS( global navigation satellite systems) are unavailable in challenging environments such as urban canyon and indoor locations due to signal blocking and jamming. Camera / IMU( inertial measurement units) integrated navigation systems can be alternatives to GNSS. In this paper,a tightly coupled Camera / IMU algorithm modeled by IEKF( iterated extended kalman filter) is presented. This tight integration approach uses image generated pixel coordinates to update the Kalman Filter directly. The developed algorithm is verified by a hybrid simulation,i.e. using inertial data from field test to fuse with simulated image feature measurements. The results show that the tight approach is superior to the loose integration when the image measurements are insufficient( i.e. less than three ground control points).展开更多
The Chinese Area Positioning System (CAPS), a navigation system based on geostafionary orbit (GEO) communication satellites, was developed in 2002 by astronomers at Chinese Academy of Sciences. Extensive positioni...The Chinese Area Positioning System (CAPS), a navigation system based on geostafionary orbit (GEO) communication satellites, was developed in 2002 by astronomers at Chinese Academy of Sciences. Extensive positioning experiments of CAPS have been performed since 2005. On the basis of CAPS, this paper studies the principle of a navigation constellation composed of slightly inclined geostationary orbit (SIGSO) communication satellites. SIGSO satellites are derived from GEO satellites which are near the end of their operational life by inclined orbit operation. Considering the abundant frequency resources of SIGSO satellites, multi-frequency observations could be conducted to enhance the precision of pseudorange measurements and ameliorate the positioning performance. A constellation composed of two GEO satellites and four SIGSO satellites with an inclination of 5° can provide service to most of the territory of China with a maximum position dilution of precision (PDOP) over 24 h of less than 42. With synthetic utilization of the truncated precise code and a physical augmentation factor in four frequencies, the navigation system with this constellation is expected to obtain comparable positioning performance to that of the coarse acquisition code of the Global Positioning System (GPS). When the new method of code-carrier phase combinations is adopted, the system has the potential to possess commensurate accuracy with the precise code in GPS. Additionally, the copious frequency resources can also be used to develop new anti-interference techniques and integrate navigation and communication.展开更多
基金Sponsored by the National High Technology Research and Development Program(Grant No.2012AA12A209)the National Natural Science Foundation of China(Grant No.41174028,41374033)+2 种基金the Key Laboratory Development Fund from the Ministry of Education of China(Grant No.618-277176)the LIESMARS Special Research Fund,the Research Start-up Fund from Wuhan Univesity(Grant No.618-273438)the Fundamental Research Funds for the Central Universities(Grant No.201161802020002)
文摘GNSS( global navigation satellite systems) are unavailable in challenging environments such as urban canyon and indoor locations due to signal blocking and jamming. Camera / IMU( inertial measurement units) integrated navigation systems can be alternatives to GNSS. In this paper,a tightly coupled Camera / IMU algorithm modeled by IEKF( iterated extended kalman filter) is presented. This tight integration approach uses image generated pixel coordinates to update the Kalman Filter directly. The developed algorithm is verified by a hybrid simulation,i.e. using inertial data from field test to fuse with simulated image feature measurements. The results show that the tight approach is superior to the loose integration when the image measurements are insufficient( i.e. less than three ground control points).
基金carried out under the support of the National Basic Research Program of China (973 program, 2007CB815501)the Key Research Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-J01)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KGCX2-EW-407-1)
文摘The Chinese Area Positioning System (CAPS), a navigation system based on geostafionary orbit (GEO) communication satellites, was developed in 2002 by astronomers at Chinese Academy of Sciences. Extensive positioning experiments of CAPS have been performed since 2005. On the basis of CAPS, this paper studies the principle of a navigation constellation composed of slightly inclined geostationary orbit (SIGSO) communication satellites. SIGSO satellites are derived from GEO satellites which are near the end of their operational life by inclined orbit operation. Considering the abundant frequency resources of SIGSO satellites, multi-frequency observations could be conducted to enhance the precision of pseudorange measurements and ameliorate the positioning performance. A constellation composed of two GEO satellites and four SIGSO satellites with an inclination of 5° can provide service to most of the territory of China with a maximum position dilution of precision (PDOP) over 24 h of less than 42. With synthetic utilization of the truncated precise code and a physical augmentation factor in four frequencies, the navigation system with this constellation is expected to obtain comparable positioning performance to that of the coarse acquisition code of the Global Positioning System (GPS). When the new method of code-carrier phase combinations is adopted, the system has the potential to possess commensurate accuracy with the precise code in GPS. Additionally, the copious frequency resources can also be used to develop new anti-interference techniques and integrate navigation and communication.