This paper presents a modified regulated cascode (RGC) transimpedance amplifier (TIA) with a novel pre-equalized technique. The pre-equalized circuit employed the broadband series inductive Jr-network and Gin- boo...This paper presents a modified regulated cascode (RGC) transimpedance amplifier (TIA) with a novel pre-equalized technique. The pre-equalized circuit employed the broadband series inductive Jr-network and Gin- boosting technique. The introduction of this technique compensates the transferred signal at the input port of the TIA without an increase in power dissipation. Furthermore, a novel miller capacitance degeneration method is designed in the gain stage for further bandwidth improvement. The TIA is realized in UMC 0.18 μm CMOS technology and tested with an on-chip 0.3 pF capacitor to emulate a photodetector (PD). The measured transimpedance gain amounts to 57 dBf2 with a -3 dB bandwidth of about 8.2 GHz and consumes only 22 mW power from a single 1.8 V supply.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.61036002,61474081)
文摘This paper presents a modified regulated cascode (RGC) transimpedance amplifier (TIA) with a novel pre-equalized technique. The pre-equalized circuit employed the broadband series inductive Jr-network and Gin- boosting technique. The introduction of this technique compensates the transferred signal at the input port of the TIA without an increase in power dissipation. Furthermore, a novel miller capacitance degeneration method is designed in the gain stage for further bandwidth improvement. The TIA is realized in UMC 0.18 μm CMOS technology and tested with an on-chip 0.3 pF capacitor to emulate a photodetector (PD). The measured transimpedance gain amounts to 57 dBf2 with a -3 dB bandwidth of about 8.2 GHz and consumes only 22 mW power from a single 1.8 V supply.