Monitoring the prevalence of antimicrobial resistance genes(ARGs)is vital for addressing the global crisis of antibiotic-resistant bacterial infections.Despite its importance,the characterization of ARGs and microbiom...Monitoring the prevalence of antimicrobial resistance genes(ARGs)is vital for addressing the global crisis of antibiotic-resistant bacterial infections.Despite its importance,the characterization of ARGs and microbiome structures,as well as the identification of indicators for routine ARG monitoring in pig farms,are still lacking,particularly concerning variations in antimicrobial exposure in different countries or regions.Here,metagenomics and random forest machine learning were used to elucidate the ARG profiles,microbiome structures,and ARG contamination indicators in pig manure under different antimicrobial pressures between China and Europe.Results showed that Chinese pigs exposed to high-level antimicrobials exhibited higher total and plasmid-mediated ARG abundances compared to those in European pigs(P<0.05).ANT(6)-Ib,APH(3')-IIIa,and tet(40)were identified as shared core ARGs between the two pig populations.Furthermore,the core ARGs identified in pig populations were correlated with those found in human populations within the same geographical regions.Lactobacillus and Prevotella were identified as the dominant genera in the core microbiomes of Chinese and European pigs,respectively.Forty ARG markers and 43 biomarkers were able to differentiate between the Chinese and European pig manure samples with accuracies of 100%and 98.7%,respectively.Indicators for assessing ARG contamination in Chinese and European pigs also achieved high accuracy(r=0.72-0.88).Escherichia flexneri in both Chinese and European pig populations carried between 21 and 37 ARGs.The results of this study emphasize the importance of global collaboration in reducing antimicrobial resistance risk and provide validated indicators for evaluating the risk of ARG contamination in pig farms.展开更多
A compact annular-radial-orifice flow magnetorheological(MR)valve was developed to investigate the effects of radial resistance gap on pressure drop.The fluid flow paths of this proposed MR valve consist of a single a...A compact annular-radial-orifice flow magnetorheological(MR)valve was developed to investigate the effects of radial resistance gap on pressure drop.The fluid flow paths of this proposed MR valve consist of a single annular flow channel,a single radial flow channel and an orifice flow channel through structure design.The finite element modelling and simulation analysis of the MR valve was carried out using ANSYS/Emag software to investigate the changes of the magnetic flux density and yield stress along the fluid flow paths under the four different radial resistance gaps.Moreover,the experimental tests were also conducted to evaluate the pressure drop,showing that the proposed MR valve has significantly improved its pressure drop at 0.5 mm width of the radial resistance gap when the annular resistance gap is fixed at 1 mm.展开更多
The static dent resistance performance of the aluminum alloy double-curved panel formed using viscous pressure forming (VPF)was studied by finite element analysis,which mainly considers the forming process conditions....The static dent resistance performance of the aluminum alloy double-curved panel formed using viscous pressure forming (VPF)was studied by finite element analysis,which mainly considers the forming process conditions.The whole simulation consisting of three stages,i.e.,forming,spring-back and static dent resistance,was carried out continuously using the finite element code ANSYS.The influence of blank holder pressure(BHP)and the drawbead on the stiffness and the static dent resistance of the panels formed using VPF was analyzed.The results show that the adequate setting of the drawbead can increase the plastic deformation of the double-curved panel,which is beneficial to the initial stiffness and the static dent resistance.There is an optimum BHP range for the stiffness and the static dent resistance.展开更多
The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the r...The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the resistance and pressure of three typical pneumatic resistances are obtained.Then,the method of static characteristics analysis only considering pneumatic resistances is proposed,the resistance network from gas supply to load is built up,and the mathematical model is derived from the flow rate formulas and flow conservation equations,with the compressibility of high pressure gas and temperature drop during the expansion considered in the model.Finally,the pilot spool displacement of 1.5 mm at an output pressure of 15MPa and the enlarging operating stroke of the pilot spool are taken as optimization targets,and the optimization is carried out based on genetic algorithm and the model mentioned above.The results show that the static characteristics of the EPPRV are significantly improved.The idea of static characteristics analysis and optimization based on pneumatic resistance network is valuable for the design of pneumatic components or system.展开更多
Recently,magnesium and its alloys have attracted more and more attention as promising implant materials due to their excellent properties such as good biocompatibility,biodegradation,non-toxicity and comparable mechan...Recently,magnesium and its alloys have attracted more and more attention as promising implant materials due to their excellent properties such as good biocompatibility,biodegradation,non-toxicity and comparable mechanical properties with natural bone.They can be gradually degraded and absorbed so as to avoid the second surgery for implants removal after the tissues are healed completely.In addition,they are also able to prevent the stress shielding effect in human body environment because of the density,elastic modulus and yield strength of magnesium closer to the bone.Unfortunately,the high corrosion rate which causes early mechanical failure of the implants in physiological environment limits the widespread use of magnesium alloys for clinical application in biology.And the high corrosion process usually causes huge hydrogen evolution and alkalinization,resulting in problems against the implants as well as the surrounding tissues.In order to enhance the corrosion resistance of magnesium alloys,in this study,the ZEK100 magnesium alloy was pre-deformed with a highpressure torsion(HPT)process and then fabricated hydroxyapatite(HA)coatings with different contents of Mg(OH)2 nanopowder via hydrothermal method.The specimens were characterized by scanning electron microscope(SEM)and X-ray diffraction(XRD).At the same time,prior and after the HPT procedure,the metallography,microhardness and tensile tests of specimens were characterized.Meanwhile,the corrosion behavior of the specimens was evaluated by electrochemical impedance spectroscopy(EIS)and hydrogen evolution tests.And the interface bonding strength of the HA coating on the magnesium alloy substrate was evaluated by a tape adhesion test/scratch test.Results showed that HPT processing refined the grain size and introduced a great number of twins,resulting in the enhancement of microhardness and Young’s modulus of ZEK100 magnesium alloy,but hardness values at the edge were higher than those at the center due to the uneven shear strain.At the same conditions,the HA coating on HPT-ZEK was denser,thicker than that on ZEK sample and the crystal sizes of HA were smaller on HPT-ZEK.These were attributed to fine,uniform distributed secondary phases and lots of fine grains,twins,grain boundaries in HPT-ZEK substrates which can provide more nucleation sites for the HA crystal.In terms of the amount of Mg(OH)2 nanopowder,Mg(OH)2 nanopowder significantly influenced the microstructure and thickness of the HA coating.And at a 0.3 mg/mL content of Mg(OH)2 nanopowder,there was the densest,thickest HA coating on magnesium alloys,and the crystal size of HA was minimum.Specifically,the HA coating thickness on ZEK-03(0.3 mg/mL Mg(OH)2 nanopowder)was 1.8 times of that on ZEK-00(0 mg/mL Mg(OH)2 nanopowder),while the HA coating thickness on HPT-03 was 2.6 times of that on ZEK-00.And the adhesion strength of HA coating on HPT-03 substrate was better than that on ZEK-03.In addition,HPT technology and surface modification by HA coating simultaneously increased the corrosion resistance of ZEK100 magnesium alloy and the corrosion of HPT-ZEK samples occurred in a more uniform manner,while it was pitting on the surface of ZEK100 magnesium alloy.Therefore,there was the best corrosion resistance on HPT-03 sample,which could promote the application of magnesium alloys in biomedical fields.展开更多
The association between fasting plasma ghrelin levels and insulin resistance and blood pressure(BP) in octogenarians was investigated in this study.A total of 487 unrelated octogenarians(including 203 men and 284 wome...The association between fasting plasma ghrelin levels and insulin resistance and blood pressure(BP) in octogenarians was investigated in this study.A total of 487 unrelated octogenarians(including 203 men and 284 women) were enrolled in this cross-sectional study at the Healthy Care Center of Shanghai East Hospital,Tongji University,China,from October 2008 to April 2009.Plasma ghrelin was determined by using the enzyme linked immunosorbent assay(ELISA).Insulin sensitivity was assessed using the homeostasis model of assessment-insulin resistance(HOMA-IR).The age of the participants ranged from 80 to 89 years(mean=83.9±4.8 years) with a body mass index(BMI) of 25.3±4.9 kg/m2.Plasma ghrelin level[w1]s were 20.94±5.34 μg/L,being 20.89±5.53 μg/L in men and 21.38±3.73 μg/L in women respectively.Plasma ghrelin was not associated with systolic(P=0.981) or diastolic(P=0.724) BP,waist circumference(P=0.278),fasting insulin(P=0.246),fasting blood glucose(FBG)(P=0.693) and HOMA-IR(P=0.232).In the control cohort,no significant differences in plasma ghrelin were found between genders(P=0.489),and among subjects with hypertension(BP>140/90 mmHg)(P=0.284) and type 2 diabetes(P=0.776).In conclusion,fasting plasma ghrelin levels are not directly correlated with insulin resistance and BP among octogenarians.展开更多
The in situ electrical resistance and transport activation energies of solid C60 fullerene have been measured under high pressure up to 25 GPa in the temperature range of 300-423 K by using a designed diamond anvil ce...The in situ electrical resistance and transport activation energies of solid C60 fullerene have been measured under high pressure up to 25 GPa in the temperature range of 300-423 K by using a designed diamond anvil cell. In the experiment, four parts of boron-doped diamond films fabricated on one anvil were used as electrical measurement probes and a W-Ta thin film thermocouple which was integrated on the other diamond anvil was used to measure the temperature. The current results indicate that the measured high-pressure resistances are bigger than those reported before at the same pressure and there is no pressure-independent resistance increase before 8 GPa. From the temperature dependence of the resistivity, the C60 behaviors as a semiconductor and the activation energies of the cubic C60 fullerene are 0,49, 0.43, and 0.36 eV at 13, 15, and 19 GPa, respectively.展开更多
Central insulin resistance, the diminished cellular sensitivity to insulin in the brain, has been implicated in diabetes mellitus, Alzheimer’s disease and other neurological disorders. However, whether and how centra...Central insulin resistance, the diminished cellular sensitivity to insulin in the brain, has been implicated in diabetes mellitus, Alzheimer’s disease and other neurological disorders. However, whether and how central insulin resistance plays a role in the eye remains unclear. Here, we performed intracerebroventricular injection of S961, a potent and specific blocker of insulin receptor in adult Wistar rats to test if central insulin resistance leads to pathological changes in ocular structures. 80 mg of S961 was stereotaxically injected into the lateral ventricle of the experimental group twice at 7 days apart, whereas buffer solution was injected to the sham control group. Blood samples, intraocular pressure, trabecular meshwork morphology, ciliary body markers, retinal and optic nerve integrity, and whole genome expression patterns were then evaluated. While neither blood glucose nor serum insulin level was significantly altered in the experimental or control group, we found that injection of S961 but not buffer solution significantly increased intraocular pressure at 14 and 24 days after first injection, along with reduced porosity and aquaporin 4 expression in the trabecular meshwork, and increased tumor necrosis factor α and aquaporin 4 expression in the ciliary body. In the retina, cell density and insulin receptor expression decreased in the retinal ganglion cell layer upon S961 injection. Fundus photography revealed peripapillary atrophy with vascular dysregulation in the experimental group. These retinal changes were accompanied by upregulation of pro-inflammatory and pro-apoptotic genes, downregulation of anti-inflammatory, anti-apoptotic, and neurotrophic genes, as well as dysregulation of genes involved in insulin signaling. Optic nerve histology indicated microglial activation and changes in the expression of glial fibrillary acidic protein, tumor necrosis factor α, and aquaporin 4. Molecular pathway architecture of the retina revealed the three most significant pathways involved being inflammation/cell stress, insulin signaling, and extracellular matrix regulation relevant to neurodegeneration. There was also a multimodal crosstalk between insulin signaling derangement and inflammation-related genes. Taken together, our results indicate that blocking insulin receptor signaling in the central nervous system can lead to trabecular meshwork and ciliary body dysfunction, intraocular pressure elevation, as well as inflammation, glial activation, and apoptosis in the retina and optic nerve. Given that central insulin resistance my lead to neurodegenerative phenotype in the visual system, targeting insulin signaling may hold promise for vision disorders involving the retina and optic nerve.展开更多
Background: Elevated Fontan pressure (FP) alone cannot fully predict clinical outcomes. We hypothesized thathemodynamic profiling using a cardiac index (CI)-systemic vascular resistance (SVR) plot could characterize c...Background: Elevated Fontan pressure (FP) alone cannot fully predict clinical outcomes. We hypothesized thathemodynamic profiling using a cardiac index (CI)-systemic vascular resistance (SVR) plot could characterize clinicalfeatures and predict the prognosis of post-Fontan patients. Methods: We included post-Fontan patients whounderwent cardiac catheterization at age < 10 years. Patients were classified into four categories: A, CI ≥ 3, SVRindex (SVRI) ≥ 20;B, CI < 3, SVRI ≥ 20;C, CI ≥ 3, SVRI < 20;and D, CI < 3, SVRI < 20. The primary outcome wasfreedom from the combined endpoint: new onset of protein-losing enteropathy or plastic bronchitis, heart transplant,and death. Clinical and hemodynamic variables and freedom from the endpoint were compared betweenthe hemodynamic categories and outcome predictors were evaluated. Results: Eighty-three patients wereincluded. Median follow-up was 5.3 years. Category A/B/C/D consisted of 4/15/53/11 patients, respectively. Allthe patients in category A were New York Heart Association I/II and had a significantly lower pulmonary vascularresistance index (PVRI). Patients in category C had lower pulmonary/systemic blood flow. Patients in category Dhad a higher PVRI and had the poorest freedom from the endpoint (44% at 5 years). Elevated FP and category Dwere outcome predictors. Conclusions: CI-SVR plots was a novel adjunctive method for Fontan hemodynamicprofiling.展开更多
Foreign body reactions to the wear debris and corrosion products from the implants,and bacterial infections are the main factors leading to the implant failures.In order to resolve these problems,the antibacterial TiN...Foreign body reactions to the wear debris and corrosion products from the implants,and bacterial infections are the main factors leading to the implant failures.In order to resolve these problems,the antibacterial TiN/Cu nanocomposite coatings with various N_(2) partial pressures were deposited on 304 stainless steels(SS)using an arc ion plating(AIP)system,named TiN/Cu-x(x=0.5,1.0,1.5 Pa).The results of X-ray diffraction analysis,energy-dispersive X-ray spectroscopy,and scanning electron microscopy showed that the N_(2) partial pressures determined the Cu contents,surface defects,and crystallite sizes of TiN/Cu nanocomposite coatings,which further influenced the comprehensive abilities.And the hardness and wear resistances of TiN/Cu coatings were enhanced with increase of the crystallite sizes.Under the co-actions of surface defects,crystallite sizes,and Cu content,TiN/Cu-1.0 and TiN/Cu-1.5 coatings possessed excellent corrosion resistance.Besides,the biological tests proved that all the TiN/Cu coatings showed no cytotoxicity with strong antibacterial ability.Among them,TiN/Cu-1.5 coating significantly promoted the cell proliferation,which is expected to be a novel antibacterial,corrosion-resistant,and wear-resistant coating on the surfaces of medical implants.展开更多
Based on the demands of compact heat exchangers and micro cooling channels applied for aviation thermal protection on aero-engines,the elbow localflow resistance charac-teristics for supercritical pressure aviation fu...Based on the demands of compact heat exchangers and micro cooling channels applied for aviation thermal protection on aero-engines,the elbow localflow resistance charac-teristics for supercritical pressure aviation fuel RP-3flowing in adiabatic horizontal serpentine tubes with the inner diameter of 1.8 mm and the massflux of 1179 kg/(m^(2)·s)were experimen-tally studied.The long-short-tube method was used to obtain the elbow pressure drop from the total serpentine tube pressure drop,and the effects of system pressures(P/Pc=1.72-2.58)and geometry parameters including bend numbers(n=5-11),bend diameters(D/d=16.7-27.8),and bend distances(L/d=20-60)on elbow pressure drops and local resistance co-efficients are analyzed on the basis of the thermal physical property variation.The results show that both the increase in the elbow pressure drop and the decrease in the local resistance coef-ficient with temperatures speed up at the near pseudo-critical temperature region of T>0.85Tpc.And the growth of the elbow local pressure drop could be inhibited by the increase of system pressures,while the local resistance coefficient is slightly affected by pressures.The influence of bend diameters on the local resistance coefficient is mild when D/d is larger than 22.2 in the premise of fully developedflow in straight tubes.Furthermore,a piecewise empir-ical correlation considering the bend diameter and physical property ratio is developed to pre-dict the elbow pressure drop of the serpentine tube and optimize the layout of the cooling tube system on aero-engines.展开更多
Objectives To investigate clinical characteristics, target organ damage, and the associated risk factors of the patients aged ≥ 80 yearswith true resistant hypertension (RH). Methods Patients aged ≥ 80 years with ...Objectives To investigate clinical characteristics, target organ damage, and the associated risk factors of the patients aged ≥ 80 yearswith true resistant hypertension (RH). Methods Patients aged ≥ 80 years with hypertension (n = 1163) were included in this study. Theincluded participants attended a structured clinical examination and an evaluation of RH was carried out. The prevalence, clinical characteristicsand target organ damage of patients with RH were assessed. The associated clinical risk factors were analyzed by using logistic regression.Results The prevalence of RH diagnosis by 24-h ambulatory blood pressure monitoring assessment was 21.15%. End-diastolic left ven-tricular internal dimension, left ventricular mass index as well as prevalence of left ventricular hypertrophy were significantly greater in pa-tients with RH than in control group. The common carotid artery intimal media thickness, carotid walls thickness, common carotid arterydiameter and relative wall thickness were significant greater in RH group than in control. A relatively higher level of creatinine, estimatedglomerular filtration rate, microalbuminuria and retinal changes was found in RIt group than in control. A multivariate analysis showed thatpatients with a history of diabetes, higher body mass index (BMI) and lipid profiles were independent risk factors of RH. Conclusions Theprevalence of RH in patients aged ≥ 80 years was within the range of reported rates of the general population. Subjects with RH diagnosisshowed a higher occurrence of target organ damage than patients with well controlled blood pressure. Patients with diabetes, higher BMI andserum lipid profiles were independent risk factors for RH in patients aged ≥ 80 years.展开更多
The FW process is a prefect method of manufacturing FRP composite air vessel resisting high pressure and aerial press vessel.In this paper FW pattern of FRP composite air vessel resisting high pressure was analyzed in...The FW process is a prefect method of manufacturing FRP composite air vessel resisting high pressure and aerial press vessel.In this paper FW pattern of FRP composite air vessel resisting high pressure was analyzed in a nutshell.The stability of FW patterns on end head is very sensitive to changing of pattern parameter.Consequently,its FW pattern was based on geodesic track.The FW angles and on equators depend on the dimension of end part and the condition of geodesic FW.Generally speaking, the polar holes of rocket engine shell are disproportional.Therefore,the FW angles of the shell column are changeable.The feasi- bility of nongeodesic FW of the shell column was discussed in this paper.Furthermore,it expounded the indispensable condition be- tween the length of shell column and the FW friction coefficient.At the same time,the general mathematic models of the movement control of nongeodesic FW were deduced.展开更多
Nematic order and its fluctuations have been widely found in iron-based superconductors. Above the nematic order transition temperature, the resistivity shows a linear relationship with the uniaxial pressure or strain...Nematic order and its fluctuations have been widely found in iron-based superconductors. Above the nematic order transition temperature, the resistivity shows a linear relationship with the uniaxial pressure or strain along the nematic direction and the normalized slope is thought to be associated with nematic susceptibility. Here we systematically studied the uniaxial pressure dependence of the resistivity in Sr1 _xBaxFel.97Nio.03As2, where nonlinear behaviors are observed near the nematic transition temperature. We show that it can be well explained by the Landau theory for the second-order phase transitions considering that the external field is not zero. The effect of the coupling between the isotropic and nematic channels is shown to be negligible. Moreover, our results suggest that the nature of the magnetic and nematic transitions in Srl xBaxFe2As2 is determined by the strength of the magnetic-elastic coupling.展开更多
Sampling study is an effective exploration method, but the most extreme environments of hydrothermal vents pose considerable engineering challenges for sampling hydrothermal fluids. Moreover, traditional sampler syste...Sampling study is an effective exploration method, but the most extreme environments of hydrothermal vents pose considerable engineering challenges for sampling hydrothermal fluids. Moreover, traditional sampler systems with sample valves have difficulty in maintaining samples in situ pressure. However, decompression changes have effect on microorganisms sensitive to such stresses. To address the technical difficulty of collecting samples from hydrothermal vents, a new bidirectional high pressure-resistant sample valve with balanced poppet was designed. The sample valve utilizes a soft high performance plastic "PEEK" as poppet. The poppet with inapposite dimension is prone to occur to plastic deformation or rupture for high working pressure in experiments. To address this issue, based on the fmite element model, simulated results on stress distribution of the poppet with different structure parameters and preload spring force were obtained. The static axial deformations on top of the poppet were experimented. The simulated results agree with the experimental results. The new sample valve seals well and it can withstand high working pressure.展开更多
Flexible piezoresistive pressure sensors can offer convenient detection of mechanical deformations for wearable electronics.Previous studies of flexible piezoresistive pressure sensors focus on the sensitivity but the...Flexible piezoresistive pressure sensors can offer convenient detection of mechanical deformations for wearable electronics.Previous studies of flexible piezoresistive pressure sensors focus on the sensitivity but the low-cost and self-powered sensors remain a challenge due to the deviation of resistance signal acquisition caused by thermoelectric voltage.Here,piezoresistive pressure sensors with ultralow Seebeck coefficient of-0.72μV/K based on carbon nanotubes(CNTs)/polyethyleneimine(PEI)/melamine(CPM)sponge are reported.Due to the diminished Seebeck effect,the CPM sponge pressure sensors successfully reduce the deviation to 18.75%and can keep stable sensitivity and resistance change under a very low working voltage and change temperature environment.The stable properties of the sensors make them successful to work for real-time sensing in self-powered wearable electronics.展开更多
In this research,an atmospheric-pressure air plasma is used to inactivate the multidrug-resistant Acinetobacter baumannii in liquid.The efficacy of the air plasma on bacterial deactivation and the cytobiological varia...In this research,an atmospheric-pressure air plasma is used to inactivate the multidrug-resistant Acinetobacter baumannii in liquid.The efficacy of the air plasma on bacterial deactivation and the cytobiological variations after the plasma treatment are investigated.According to colony forming units,nearly all the bacteria(6-log) are inactivated after 10 min of air plasma treatment.However,7% of the bacteria enter a viable but non-culturable state detected by the resazurin based assay during the same period of plasma exposure.Meanwhile,86% of the bacteria lose their membrane integrity in the light of SYTO 9/PI staining assay.The morphological changes in the cells are examined by scanning electron microscopy and bacteria with morphological changes are rare after plasma exposure in the liquid.The concentrations of the long-living RS,such as H2O2,NO3^- and O3,in liquid induced by plasma treatment are measured,and they increase with plasma treatment time.The changes of the intracellular ROS may be related to cell death,which may be attributed to oxidative stress and other damage effects induced by RS plasma generated in liquid.The rapid and effective bacteria inactivation may stem from the RS in the liquid generated by plasma and air plasmas may become a valuable therapy in the treatment of infected wounds.展开更多
In exploration for tight oil, the content and saturation of hydrocarbon in the tight reservoir is a key factor for evaluating the reserve. Therefore, it is necessary to study the geological history of hydrocarbon accu...In exploration for tight oil, the content and saturation of hydrocarbon in the tight reservoir is a key factor for evaluating the reserve. Therefore, it is necessary to study the geological history of hydrocarbon accumulation and the tight oil charging process. However, kinetic models used for petroleum development are not applicable for petroleum exploration. In this study, a static resistance model[ is proposed after analyzing resistances in ultra-slow flow in porous media. Using this model, the disco^atinuous pattern of oil charging is reproduced through incompressible Navier-Stokes equations, the phase field method and the finite element method. This study also explains macroscopic percolation behavior with microscopic flow mechanisms and discusses some issues in ultra-slow flow in a micro/nano pore-throat network. The resistance analysis reveals that capillary resistance and dissipation resistance are dominant factors in the mechanism of oil accumulation in tight reservoirs. Numerical simulations show that pressure thresholds exist and result in discontinuous oil charging. Generally, it is proven that the static model is more applicable than kinetic models in describing oil accumulation in tight reservoirs.展开更多
This paper presents an analytical approach for estimating frictional resistance to pipe movement at soil and external pipe surface of buried coated pressurized steel pipes relative to the internal thrust force.The pro...This paper presents an analytical approach for estimating frictional resistance to pipe movement at soil and external pipe surface of buried coated pressurized steel pipes relative to the internal thrust force.The proposed analytical method was developed based on 36 experiments,which involved three coating types(cement mortar(CM),polyurethane type-I(PT-I),prefabricated plastic tape(PPT))on pipes’surfaces,three different soils(pea-gravel(PG),sand(S),silty-clay(SC)),and four simulated over burden depths above the pipe’s crown.Investigation showed frictional resistance decreased with increasing over burden depth above the pipe’s crown.The degree of frictional resistance at the pipe-soil interface was found to be in the order of PG>SC>S for all coating variations and overburden depths.CM coated pipe buried in all three types of soil produced significantly higher frictional resistance as compared to other coating types.Based on experimental data,the developed analytical introduced a dimensionless factor“Z”,which included effects of types of coatings,soil,and overburden depths for simplified rapid calculation.Analysis showed that the method provided a better prediction of frictional resistance forces,in comparison to previous analytical methods,which were barely close in predicting friction resistance for different coating variations,soil types,and overburden depths.Friction resistance force values reported herein could be considered conservative.展开更多
基金supported by the Foundation for the National Key R&D Program(2022YFD1800400)Innovative Research Groups of the National Natural Science Foundation of China(32121004)Natural Science Foundation of Guangdong Province of China(2021A1515011159)。
文摘Monitoring the prevalence of antimicrobial resistance genes(ARGs)is vital for addressing the global crisis of antibiotic-resistant bacterial infections.Despite its importance,the characterization of ARGs and microbiome structures,as well as the identification of indicators for routine ARG monitoring in pig farms,are still lacking,particularly concerning variations in antimicrobial exposure in different countries or regions.Here,metagenomics and random forest machine learning were used to elucidate the ARG profiles,microbiome structures,and ARG contamination indicators in pig manure under different antimicrobial pressures between China and Europe.Results showed that Chinese pigs exposed to high-level antimicrobials exhibited higher total and plasmid-mediated ARG abundances compared to those in European pigs(P<0.05).ANT(6)-Ib,APH(3')-IIIa,and tet(40)were identified as shared core ARGs between the two pig populations.Furthermore,the core ARGs identified in pig populations were correlated with those found in human populations within the same geographical regions.Lactobacillus and Prevotella were identified as the dominant genera in the core microbiomes of Chinese and European pigs,respectively.Forty ARG markers and 43 biomarkers were able to differentiate between the Chinese and European pig manure samples with accuracies of 100%and 98.7%,respectively.Indicators for assessing ARG contamination in Chinese and European pigs also achieved high accuracy(r=0.72-0.88).Escherichia flexneri in both Chinese and European pig populations carried between 21 and 37 ARGs.The results of this study emphasize the importance of global collaboration in reducing antimicrobial resistance risk and provide validated indicators for evaluating the risk of ARG contamination in pig farms.
基金Supported by the National Natural Science Foundation of China(51765016,51475165,11462004)the Jiangxi Provincial Foundation for Leaders of Academic and Disciplines in Science(20162BCB22019)5511 Science and Technology Innovation Talent Project of Jiangxi Province(20165BCB18011)
文摘A compact annular-radial-orifice flow magnetorheological(MR)valve was developed to investigate the effects of radial resistance gap on pressure drop.The fluid flow paths of this proposed MR valve consist of a single annular flow channel,a single radial flow channel and an orifice flow channel through structure design.The finite element modelling and simulation analysis of the MR valve was carried out using ANSYS/Emag software to investigate the changes of the magnetic flux density and yield stress along the fluid flow paths under the four different radial resistance gaps.Moreover,the experimental tests were also conducted to evaluate the pressure drop,showing that the proposed MR valve has significantly improved its pressure drop at 0.5 mm width of the radial resistance gap when the annular resistance gap is fixed at 1 mm.
文摘The static dent resistance performance of the aluminum alloy double-curved panel formed using viscous pressure forming (VPF)was studied by finite element analysis,which mainly considers the forming process conditions.The whole simulation consisting of three stages,i.e.,forming,spring-back and static dent resistance,was carried out continuously using the finite element code ANSYS.The influence of blank holder pressure(BHP)and the drawbead on the stiffness and the static dent resistance of the panels formed using VPF was analyzed.The results show that the adequate setting of the drawbead can increase the plastic deformation of the double-curved panel,which is beneficial to the initial stiffness and the static dent resistance.There is an optimum BHP range for the stiffness and the static dent resistance.
基金Project(50575202) supported by the National Natural Science Foundation of China
文摘The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the resistance and pressure of three typical pneumatic resistances are obtained.Then,the method of static characteristics analysis only considering pneumatic resistances is proposed,the resistance network from gas supply to load is built up,and the mathematical model is derived from the flow rate formulas and flow conservation equations,with the compressibility of high pressure gas and temperature drop during the expansion considered in the model.Finally,the pilot spool displacement of 1.5 mm at an output pressure of 15MPa and the enlarging operating stroke of the pilot spool are taken as optimization targets,and the optimization is carried out based on genetic algorithm and the model mentioned above.The results show that the static characteristics of the EPPRV are significantly improved.The idea of static characteristics analysis and optimization based on pneumatic resistance network is valuable for the design of pneumatic components or system.
基金sponsored by the National Natural Science Foundation of China ( 51571150,11572222)Tianjin Natural Science Foundation ( 14JCYBJC16900)
文摘Recently,magnesium and its alloys have attracted more and more attention as promising implant materials due to their excellent properties such as good biocompatibility,biodegradation,non-toxicity and comparable mechanical properties with natural bone.They can be gradually degraded and absorbed so as to avoid the second surgery for implants removal after the tissues are healed completely.In addition,they are also able to prevent the stress shielding effect in human body environment because of the density,elastic modulus and yield strength of magnesium closer to the bone.Unfortunately,the high corrosion rate which causes early mechanical failure of the implants in physiological environment limits the widespread use of magnesium alloys for clinical application in biology.And the high corrosion process usually causes huge hydrogen evolution and alkalinization,resulting in problems against the implants as well as the surrounding tissues.In order to enhance the corrosion resistance of magnesium alloys,in this study,the ZEK100 magnesium alloy was pre-deformed with a highpressure torsion(HPT)process and then fabricated hydroxyapatite(HA)coatings with different contents of Mg(OH)2 nanopowder via hydrothermal method.The specimens were characterized by scanning electron microscope(SEM)and X-ray diffraction(XRD).At the same time,prior and after the HPT procedure,the metallography,microhardness and tensile tests of specimens were characterized.Meanwhile,the corrosion behavior of the specimens was evaluated by electrochemical impedance spectroscopy(EIS)and hydrogen evolution tests.And the interface bonding strength of the HA coating on the magnesium alloy substrate was evaluated by a tape adhesion test/scratch test.Results showed that HPT processing refined the grain size and introduced a great number of twins,resulting in the enhancement of microhardness and Young’s modulus of ZEK100 magnesium alloy,but hardness values at the edge were higher than those at the center due to the uneven shear strain.At the same conditions,the HA coating on HPT-ZEK was denser,thicker than that on ZEK sample and the crystal sizes of HA were smaller on HPT-ZEK.These were attributed to fine,uniform distributed secondary phases and lots of fine grains,twins,grain boundaries in HPT-ZEK substrates which can provide more nucleation sites for the HA crystal.In terms of the amount of Mg(OH)2 nanopowder,Mg(OH)2 nanopowder significantly influenced the microstructure and thickness of the HA coating.And at a 0.3 mg/mL content of Mg(OH)2 nanopowder,there was the densest,thickest HA coating on magnesium alloys,and the crystal size of HA was minimum.Specifically,the HA coating thickness on ZEK-03(0.3 mg/mL Mg(OH)2 nanopowder)was 1.8 times of that on ZEK-00(0 mg/mL Mg(OH)2 nanopowder),while the HA coating thickness on HPT-03 was 2.6 times of that on ZEK-00.And the adhesion strength of HA coating on HPT-03 substrate was better than that on ZEK-03.In addition,HPT technology and surface modification by HA coating simultaneously increased the corrosion resistance of ZEK100 magnesium alloy and the corrosion of HPT-ZEK samples occurred in a more uniform manner,while it was pitting on the surface of ZEK100 magnesium alloy.Therefore,there was the best corrosion resistance on HPT-03 sample,which could promote the application of magnesium alloys in biomedical fields.
基金supported by grants from the National Natural Sciences Foundation of China (No.30600294)Shanghai Scientific and Technological Innovation Plan(No.08411951300)
文摘The association between fasting plasma ghrelin levels and insulin resistance and blood pressure(BP) in octogenarians was investigated in this study.A total of 487 unrelated octogenarians(including 203 men and 284 women) were enrolled in this cross-sectional study at the Healthy Care Center of Shanghai East Hospital,Tongji University,China,from October 2008 to April 2009.Plasma ghrelin was determined by using the enzyme linked immunosorbent assay(ELISA).Insulin sensitivity was assessed using the homeostasis model of assessment-insulin resistance(HOMA-IR).The age of the participants ranged from 80 to 89 years(mean=83.9±4.8 years) with a body mass index(BMI) of 25.3±4.9 kg/m2.Plasma ghrelin level[w1]s were 20.94±5.34 μg/L,being 20.89±5.53 μg/L in men and 21.38±3.73 μg/L in women respectively.Plasma ghrelin was not associated with systolic(P=0.981) or diastolic(P=0.724) BP,waist circumference(P=0.278),fasting insulin(P=0.246),fasting blood glucose(FBG)(P=0.693) and HOMA-IR(P=0.232).In the control cohort,no significant differences in plasma ghrelin were found between genders(P=0.489),and among subjects with hypertension(BP>140/90 mmHg)(P=0.284) and type 2 diabetes(P=0.776).In conclusion,fasting plasma ghrelin levels are not directly correlated with insulin resistance and BP among octogenarians.
基金supported by the National Basic Research Program of China (Grant No. 2011CB808204)the National Natural Science Foundation of China (Grant Nos. 11074094 and 91014004)the Fundamental Research Funds for Jilin University, China (Grant No. 450060491500)
文摘The in situ electrical resistance and transport activation energies of solid C60 fullerene have been measured under high pressure up to 25 GPa in the temperature range of 300-423 K by using a designed diamond anvil cell. In the experiment, four parts of boron-doped diamond films fabricated on one anvil were used as electrical measurement probes and a W-Ta thin film thermocouple which was integrated on the other diamond anvil was used to measure the temperature. The current results indicate that the measured high-pressure resistances are bigger than those reported before at the same pressure and there is no pressure-independent resistance increase before 8 GPa. From the temperature dependence of the resistivity, the C60 behaviors as a semiconductor and the activation energies of the cubic C60 fullerene are 0,49, 0.43, and 0.36 eV at 13, 15, and 19 GPa, respectively.
基金supported by a grant from All India Institute of Medical Sciences,New Delhi (to RD and TD)Indian Council of Medical Research,Senior Research Fellowship Grant (3/1/2(24)/oph-2009-NCD-II,to MAF)+1 种基金Feldstein Medical Foundation Research Grant (to KCC)unrestricted fund from Research to Prevent Blindness to NYU Langone Health Department of Ophthalmology (to KCC)。
文摘Central insulin resistance, the diminished cellular sensitivity to insulin in the brain, has been implicated in diabetes mellitus, Alzheimer’s disease and other neurological disorders. However, whether and how central insulin resistance plays a role in the eye remains unclear. Here, we performed intracerebroventricular injection of S961, a potent and specific blocker of insulin receptor in adult Wistar rats to test if central insulin resistance leads to pathological changes in ocular structures. 80 mg of S961 was stereotaxically injected into the lateral ventricle of the experimental group twice at 7 days apart, whereas buffer solution was injected to the sham control group. Blood samples, intraocular pressure, trabecular meshwork morphology, ciliary body markers, retinal and optic nerve integrity, and whole genome expression patterns were then evaluated. While neither blood glucose nor serum insulin level was significantly altered in the experimental or control group, we found that injection of S961 but not buffer solution significantly increased intraocular pressure at 14 and 24 days after first injection, along with reduced porosity and aquaporin 4 expression in the trabecular meshwork, and increased tumor necrosis factor α and aquaporin 4 expression in the ciliary body. In the retina, cell density and insulin receptor expression decreased in the retinal ganglion cell layer upon S961 injection. Fundus photography revealed peripapillary atrophy with vascular dysregulation in the experimental group. These retinal changes were accompanied by upregulation of pro-inflammatory and pro-apoptotic genes, downregulation of anti-inflammatory, anti-apoptotic, and neurotrophic genes, as well as dysregulation of genes involved in insulin signaling. Optic nerve histology indicated microglial activation and changes in the expression of glial fibrillary acidic protein, tumor necrosis factor α, and aquaporin 4. Molecular pathway architecture of the retina revealed the three most significant pathways involved being inflammation/cell stress, insulin signaling, and extracellular matrix regulation relevant to neurodegeneration. There was also a multimodal crosstalk between insulin signaling derangement and inflammation-related genes. Taken together, our results indicate that blocking insulin receptor signaling in the central nervous system can lead to trabecular meshwork and ciliary body dysfunction, intraocular pressure elevation, as well as inflammation, glial activation, and apoptosis in the retina and optic nerve. Given that central insulin resistance my lead to neurodegenerative phenotype in the visual system, targeting insulin signaling may hold promise for vision disorders involving the retina and optic nerve.
文摘Background: Elevated Fontan pressure (FP) alone cannot fully predict clinical outcomes. We hypothesized thathemodynamic profiling using a cardiac index (CI)-systemic vascular resistance (SVR) plot could characterize clinicalfeatures and predict the prognosis of post-Fontan patients. Methods: We included post-Fontan patients whounderwent cardiac catheterization at age < 10 years. Patients were classified into four categories: A, CI ≥ 3, SVRindex (SVRI) ≥ 20;B, CI < 3, SVRI ≥ 20;C, CI ≥ 3, SVRI < 20;and D, CI < 3, SVRI < 20. The primary outcome wasfreedom from the combined endpoint: new onset of protein-losing enteropathy or plastic bronchitis, heart transplant,and death. Clinical and hemodynamic variables and freedom from the endpoint were compared betweenthe hemodynamic categories and outcome predictors were evaluated. Results: Eighty-three patients wereincluded. Median follow-up was 5.3 years. Category A/B/C/D consisted of 4/15/53/11 patients, respectively. Allthe patients in category A were New York Heart Association I/II and had a significantly lower pulmonary vascularresistance index (PVRI). Patients in category C had lower pulmonary/systemic blood flow. Patients in category Dhad a higher PVRI and had the poorest freedom from the endpoint (44% at 5 years). Elevated FP and category Dwere outcome predictors. Conclusions: CI-SVR plots was a novel adjunctive method for Fontan hemodynamicprofiling.
基金financially supported by National Key Research and Development Program of China (Nos. 2018YFC1106601 and 2016YFC1100601)Liaoning Revitalization Talents Program (No. XLYC1807069)+1 种基金National Natural Science Foundation of China (Nos. 51631009 and 31870954)Key Projects for Foreign Cooperation of Bureau of International Cooperation Chinese Academy of Sciences (No. 174321KYSB20180006)
文摘Foreign body reactions to the wear debris and corrosion products from the implants,and bacterial infections are the main factors leading to the implant failures.In order to resolve these problems,the antibacterial TiN/Cu nanocomposite coatings with various N_(2) partial pressures were deposited on 304 stainless steels(SS)using an arc ion plating(AIP)system,named TiN/Cu-x(x=0.5,1.0,1.5 Pa).The results of X-ray diffraction analysis,energy-dispersive X-ray spectroscopy,and scanning electron microscopy showed that the N_(2) partial pressures determined the Cu contents,surface defects,and crystallite sizes of TiN/Cu nanocomposite coatings,which further influenced the comprehensive abilities.And the hardness and wear resistances of TiN/Cu coatings were enhanced with increase of the crystallite sizes.Under the co-actions of surface defects,crystallite sizes,and Cu content,TiN/Cu-1.0 and TiN/Cu-1.5 coatings possessed excellent corrosion resistance.Besides,the biological tests proved that all the TiN/Cu coatings showed no cytotoxicity with strong antibacterial ability.Among them,TiN/Cu-1.5 coating significantly promoted the cell proliferation,which is expected to be a novel antibacterial,corrosion-resistant,and wear-resistant coating on the surfaces of medical implants.
基金Fundamental Research Funds for the Central Universities (No.501XTCX2023146001 and 501QYZX2023146001)the National Major Science and Technology Projects of China (Nos.J2019-III-0021-0065 and J2019-III-0015-0059)the Science Center for Gas Turbine Project (No.P2022-C-II-005-001).
文摘Based on the demands of compact heat exchangers and micro cooling channels applied for aviation thermal protection on aero-engines,the elbow localflow resistance charac-teristics for supercritical pressure aviation fuel RP-3flowing in adiabatic horizontal serpentine tubes with the inner diameter of 1.8 mm and the massflux of 1179 kg/(m^(2)·s)were experimen-tally studied.The long-short-tube method was used to obtain the elbow pressure drop from the total serpentine tube pressure drop,and the effects of system pressures(P/Pc=1.72-2.58)and geometry parameters including bend numbers(n=5-11),bend diameters(D/d=16.7-27.8),and bend distances(L/d=20-60)on elbow pressure drops and local resistance co-efficients are analyzed on the basis of the thermal physical property variation.The results show that both the increase in the elbow pressure drop and the decrease in the local resistance coef-ficient with temperatures speed up at the near pseudo-critical temperature region of T>0.85Tpc.And the growth of the elbow local pressure drop could be inhibited by the increase of system pressures,while the local resistance coefficient is slightly affected by pressures.The influence of bend diameters on the local resistance coefficient is mild when D/d is larger than 22.2 in the premise of fully developedflow in straight tubes.Furthermore,a piecewise empir-ical correlation considering the bend diameter and physical property ratio is developed to pre-dict the elbow pressure drop of the serpentine tube and optimize the layout of the cooling tube system on aero-engines.
文摘Objectives To investigate clinical characteristics, target organ damage, and the associated risk factors of the patients aged ≥ 80 yearswith true resistant hypertension (RH). Methods Patients aged ≥ 80 years with hypertension (n = 1163) were included in this study. Theincluded participants attended a structured clinical examination and an evaluation of RH was carried out. The prevalence, clinical characteristicsand target organ damage of patients with RH were assessed. The associated clinical risk factors were analyzed by using logistic regression.Results The prevalence of RH diagnosis by 24-h ambulatory blood pressure monitoring assessment was 21.15%. End-diastolic left ven-tricular internal dimension, left ventricular mass index as well as prevalence of left ventricular hypertrophy were significantly greater in pa-tients with RH than in control group. The common carotid artery intimal media thickness, carotid walls thickness, common carotid arterydiameter and relative wall thickness were significant greater in RH group than in control. A relatively higher level of creatinine, estimatedglomerular filtration rate, microalbuminuria and retinal changes was found in RIt group than in control. A multivariate analysis showed thatpatients with a history of diabetes, higher body mass index (BMI) and lipid profiles were independent risk factors of RH. Conclusions Theprevalence of RH in patients aged ≥ 80 years was within the range of reported rates of the general population. Subjects with RH diagnosisshowed a higher occurrence of target organ damage than patients with well controlled blood pressure. Patients with diabetes, higher BMI andserum lipid profiles were independent risk factors for RH in patients aged ≥ 80 years.
文摘The FW process is a prefect method of manufacturing FRP composite air vessel resisting high pressure and aerial press vessel.In this paper FW pattern of FRP composite air vessel resisting high pressure was analyzed in a nutshell.The stability of FW patterns on end head is very sensitive to changing of pattern parameter.Consequently,its FW pattern was based on geodesic track.The FW angles and on equators depend on the dimension of end part and the condition of geodesic FW.Generally speaking, the polar holes of rocket engine shell are disproportional.Therefore,the FW angles of the shell column are changeable.The feasi- bility of nongeodesic FW of the shell column was discussed in this paper.Furthermore,it expounded the indispensable condition be- tween the length of shell column and the FW friction coefficient.At the same time,the general mathematic models of the movement control of nongeodesic FW were deduced.
基金Project supported by the Science Fonds from the Ministry of Science and Technology of China(Grant Nos.2017YFA0302903,017YFA0303103,2016YFA0300502,and 2015CB921302)the National Natural Science Foundation of China(Grant Nos.11674406 and 11674372)+1 种基金the“Strategic Priority Research Program(B)”of the Chinese Academy of Sciences(Grant Nos.XDB07020300 and XDB07020200)the Youth Innovation Promotion Association of the Chinese Academy of Sciences
文摘Nematic order and its fluctuations have been widely found in iron-based superconductors. Above the nematic order transition temperature, the resistivity shows a linear relationship with the uniaxial pressure or strain along the nematic direction and the normalized slope is thought to be associated with nematic susceptibility. Here we systematically studied the uniaxial pressure dependence of the resistivity in Sr1 _xBaxFel.97Nio.03As2, where nonlinear behaviors are observed near the nematic transition temperature. We show that it can be well explained by the Landau theory for the second-order phase transitions considering that the external field is not zero. The effect of the coupling between the isotropic and nematic channels is shown to be negligible. Moreover, our results suggest that the nature of the magnetic and nematic transitions in Srl xBaxFe2As2 is determined by the strength of the magnetic-elastic coupling.
基金supported by National Hi-tech Research and Development Program of China (863 Program, No. 2002AA401002-05).
文摘Sampling study is an effective exploration method, but the most extreme environments of hydrothermal vents pose considerable engineering challenges for sampling hydrothermal fluids. Moreover, traditional sampler systems with sample valves have difficulty in maintaining samples in situ pressure. However, decompression changes have effect on microorganisms sensitive to such stresses. To address the technical difficulty of collecting samples from hydrothermal vents, a new bidirectional high pressure-resistant sample valve with balanced poppet was designed. The sample valve utilizes a soft high performance plastic "PEEK" as poppet. The poppet with inapposite dimension is prone to occur to plastic deformation or rupture for high working pressure in experiments. To address this issue, based on the fmite element model, simulated results on stress distribution of the poppet with different structure parameters and preload spring force were obtained. The static axial deformations on top of the poppet were experimented. The simulated results agree with the experimental results. The new sample valve seals well and it can withstand high working pressure.
基金Fundamental Research Fund for the Central Universities,China(Nos.2232020G-01 and 19D110106)Young Elite Scientists Sponsorship Program by China Association for Science and Technology,China(No.2017QNRC001)Graduate Student Innovation Fund of Donghua University,China(No.20D310111)。
文摘Flexible piezoresistive pressure sensors can offer convenient detection of mechanical deformations for wearable electronics.Previous studies of flexible piezoresistive pressure sensors focus on the sensitivity but the low-cost and self-powered sensors remain a challenge due to the deviation of resistance signal acquisition caused by thermoelectric voltage.Here,piezoresistive pressure sensors with ultralow Seebeck coefficient of-0.72μV/K based on carbon nanotubes(CNTs)/polyethyleneimine(PEI)/melamine(CPM)sponge are reported.Due to the diminished Seebeck effect,the CPM sponge pressure sensors successfully reduce the deviation to 18.75%and can keep stable sensitivity and resistance change under a very low working voltage and change temperature environment.The stable properties of the sensors make them successful to work for real-time sensing in self-powered wearable electronics.
基金supported by the Spark Program of the second Affiliated Hospital of Anhui Medical University (Grant No.2015hhjh04)National Natural Science Foundation of China under Grant No.51777206+6 种基金Natural Science Foundation of Anhui Province (Grant No.1708085MA13 and No.1708085MB47)Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences under Grant (No.DSJJ-14-YY02)City University of Hong Kong Applied Research Grant (ARG) (No.9667144)Hong Kong Research Grants Council (RGC) General Research Funds (GRF) (No.City U 11301215)Doctoral Fund of Ministry of Education of China (No.2017M612058)Specialized Research Fund for the Doctoral Program of Hefei University of Technology (No.JZ2016HGBZ0768)Foundation of Anhui Province Key Laboratory of Medical Physics and Technology (Grant No.LMPT2017Y7BP0U1581)
文摘In this research,an atmospheric-pressure air plasma is used to inactivate the multidrug-resistant Acinetobacter baumannii in liquid.The efficacy of the air plasma on bacterial deactivation and the cytobiological variations after the plasma treatment are investigated.According to colony forming units,nearly all the bacteria(6-log) are inactivated after 10 min of air plasma treatment.However,7% of the bacteria enter a viable but non-culturable state detected by the resazurin based assay during the same period of plasma exposure.Meanwhile,86% of the bacteria lose their membrane integrity in the light of SYTO 9/PI staining assay.The morphological changes in the cells are examined by scanning electron microscopy and bacteria with morphological changes are rare after plasma exposure in the liquid.The concentrations of the long-living RS,such as H2O2,NO3^- and O3,in liquid induced by plasma treatment are measured,and they increase with plasma treatment time.The changes of the intracellular ROS may be related to cell death,which may be attributed to oxidative stress and other damage effects induced by RS plasma generated in liquid.The rapid and effective bacteria inactivation may stem from the RS in the liquid generated by plasma and air plasmas may become a valuable therapy in the treatment of infected wounds.
基金supported by the Chinese Major National Scientific and Technological Program (2011ZX05001)Chinese Postdoctoral Fund (2013M540114)
文摘In exploration for tight oil, the content and saturation of hydrocarbon in the tight reservoir is a key factor for evaluating the reserve. Therefore, it is necessary to study the geological history of hydrocarbon accumulation and the tight oil charging process. However, kinetic models used for petroleum development are not applicable for petroleum exploration. In this study, a static resistance model[ is proposed after analyzing resistances in ultra-slow flow in porous media. Using this model, the disco^atinuous pattern of oil charging is reproduced through incompressible Navier-Stokes equations, the phase field method and the finite element method. This study also explains macroscopic percolation behavior with microscopic flow mechanisms and discusses some issues in ultra-slow flow in a micro/nano pore-throat network. The resistance analysis reveals that capillary resistance and dissipation resistance are dominant factors in the mechanism of oil accumulation in tight reservoirs. Numerical simulations show that pressure thresholds exist and result in discontinuous oil charging. Generally, it is proven that the static model is more applicable than kinetic models in describing oil accumulation in tight reservoirs.
文摘This paper presents an analytical approach for estimating frictional resistance to pipe movement at soil and external pipe surface of buried coated pressurized steel pipes relative to the internal thrust force.The proposed analytical method was developed based on 36 experiments,which involved three coating types(cement mortar(CM),polyurethane type-I(PT-I),prefabricated plastic tape(PPT))on pipes’surfaces,three different soils(pea-gravel(PG),sand(S),silty-clay(SC)),and four simulated over burden depths above the pipe’s crown.Investigation showed frictional resistance decreased with increasing over burden depth above the pipe’s crown.The degree of frictional resistance at the pipe-soil interface was found to be in the order of PG>SC>S for all coating variations and overburden depths.CM coated pipe buried in all three types of soil produced significantly higher frictional resistance as compared to other coating types.Based on experimental data,the developed analytical introduced a dimensionless factor“Z”,which included effects of types of coatings,soil,and overburden depths for simplified rapid calculation.Analysis showed that the method provided a better prediction of frictional resistance forces,in comparison to previous analytical methods,which were barely close in predicting friction resistance for different coating variations,soil types,and overburden depths.Friction resistance force values reported herein could be considered conservative.