加速功率型电力系统稳定器(Power System Stabilizer,PSS)在发动机深度调峰进相中,由于计算误差大,有可能导致功率低频、振荡等问题的产生。为解决这些问题,阐述如何进行系统的稳定性分析,并且借助仿真测试验证系统分析的合理性,具体通...加速功率型电力系统稳定器(Power System Stabilizer,PSS)在发动机深度调峰进相中,由于计算误差大,有可能导致功率低频、振荡等问题的产生。为解决这些问题,阐述如何进行系统的稳定性分析,并且借助仿真测试验证系统分析的合理性,具体通过励磁装置采用电气量计算转速的方法,求解得到有功、无功状态下的转速灵敏度数据并进行分析。通过这一分析验证现场理论分析的精准度,对系统稳定研究有一定的参考价值。展开更多
Electricity is crucial for critical sectors such as banking, healthcare, education, and business. However, in developing nations like Cameroon, persistent power fluctuations and outages present significant challenges,...Electricity is crucial for critical sectors such as banking, healthcare, education, and business. However, in developing nations like Cameroon, persistent power fluctuations and outages present significant challenges, leading to communication disruptions, food spoilage, water supply interruptions, and financial losses. This study proposes a novel solution: a three-input automatic transfer switch integrated with Internet of Things (IoT) and data logging capabilities. The system automatically switches between three independent power sources based on priority and availability, employing electromechanical contactors, relays, and timers for seamless switching. It incorporates ATMEGA328P microcontrollers, a GSM module for communication, and an SD card module for efficient data logging. Safety measures, such as miniature circuit breakers, voltage monitoring relays, and proper grounding, ensure user protection and system integrity. A user-friendly mobile application enables remote manual switching and real-time system information requests, while SMS notifications inform consumers about power source changes. The system has a power rating of 4.752 kW, accommodating a maximum continuous load of the same value. Voltage dividers provide a reliable 3.37 VDC output from a 12 VDC input, and data logging operates effectively by storing system data onto an SD card every 1.5 seconds. Comprehensive testing validates the system’s performance, with an average percentage error of 2.31% compared to actual values, falling within an acceptable range. This solution distinguishes itself by incorporating modern technologies like data logging and IoT, addressing the limitations of existing alternatives.展开更多
文摘加速功率型电力系统稳定器(Power System Stabilizer,PSS)在发动机深度调峰进相中,由于计算误差大,有可能导致功率低频、振荡等问题的产生。为解决这些问题,阐述如何进行系统的稳定性分析,并且借助仿真测试验证系统分析的合理性,具体通过励磁装置采用电气量计算转速的方法,求解得到有功、无功状态下的转速灵敏度数据并进行分析。通过这一分析验证现场理论分析的精准度,对系统稳定研究有一定的参考价值。
文摘Electricity is crucial for critical sectors such as banking, healthcare, education, and business. However, in developing nations like Cameroon, persistent power fluctuations and outages present significant challenges, leading to communication disruptions, food spoilage, water supply interruptions, and financial losses. This study proposes a novel solution: a three-input automatic transfer switch integrated with Internet of Things (IoT) and data logging capabilities. The system automatically switches between three independent power sources based on priority and availability, employing electromechanical contactors, relays, and timers for seamless switching. It incorporates ATMEGA328P microcontrollers, a GSM module for communication, and an SD card module for efficient data logging. Safety measures, such as miniature circuit breakers, voltage monitoring relays, and proper grounding, ensure user protection and system integrity. A user-friendly mobile application enables remote manual switching and real-time system information requests, while SMS notifications inform consumers about power source changes. The system has a power rating of 4.752 kW, accommodating a maximum continuous load of the same value. Voltage dividers provide a reliable 3.37 VDC output from a 12 VDC input, and data logging operates effectively by storing system data onto an SD card every 1.5 seconds. Comprehensive testing validates the system’s performance, with an average percentage error of 2.31% compared to actual values, falling within an acceptable range. This solution distinguishes itself by incorporating modern technologies like data logging and IoT, addressing the limitations of existing alternatives.