Re-routing system has become an important technology to improve traffic efficiency.The traditional re-routing schemes do not consider the dynamic characteristics of urban traffic,making the planned routes unable to co...Re-routing system has become an important technology to improve traffic efficiency.The traditional re-routing schemes do not consider the dynamic characteristics of urban traffic,making the planned routes unable to cope with the changing traf-fic conditions.Based on real-time traffic information,it is challenging to dynamically re-route connected vehicles to alleviate traffic congestion.Moreover,how to obtain global traffic information while reducing communication costs and improving travel efficiency poses a challenge to the re-routing system.To deal with these challenges,this paper proposes CHRT,a clustering-based hybrid re-routing system for traffic congestion avoidance.CHRT develops a multi-layer hybrid architecture.The central server accesses the global view of traffic,and the distributed part is composed of vehicles divided into clusters to reduce latency and communication overhead.Then,a clustering-based priority mechanism is proposed,which sets priorities for clusters based on realtime traffic information to avoid secondary congestion.Furthermore,to plan the optimal routes for vehicles while alleviating global traffic congestion,this paper presents a multi-metric re-routing algorithm.Through extensive simulations based on the SUMO traffic simulator,CHRT reduces vehicle traveling time,fuel consumption,and CO2 emissions compared to other systems.In addition,CHRT globally alleviates traffic congestion and improves traffic efficiency.展开更多
Seeking shortest travel times through smart algorithms may not only optimize the travel times but also reduce carbon emissions, such as CO2, CO and Hydro-Carbons. It can also result in reduced driver frustrations and ...Seeking shortest travel times through smart algorithms may not only optimize the travel times but also reduce carbon emissions, such as CO2, CO and Hydro-Carbons. It can also result in reduced driver frustrations and can increase passenger expectations of consistent travel times, which in turn points to benefits in overall planning of day schedules. Fuel consumption savings are another benefit from the same. However, attempts to elect the shortest path as an assumption of quick travel times, often work counter to the very objective intended and come with the risk of creating a “Braess Paradox” which is about congestion resulting when several drivers attempt to elect the same shortest route. The situation that arises has been referred to as the price of anarchy! We propose algorithms that find multiple shortest paths between an origin and a destination. It must be appreciated that these will not yield the exact number of Kilometers travelled, but favourable weights in terms of travel times so that a reasonable allowable time difference between the multiple shortest paths is attained when the same Origin and Destinations are considered and favourable responsive routes are determined as variables of traffic levels and time of day. These routes are selected on the paradigm of route balancing, re-routing algorithms and traffic light intelligence all coming together to result in optimized consistent travel times whose benefits are evenly spread to all motorist, unlike the Entropy balanced k shortest paths (EBkSP) method which favours some motorists on the basis of urgency. This paper proposes a Fully Balanced Multiple-Candidate shortest path (FBMkP) by which we model in SUMO to overcome the computational overhead of assigning priority differently to each travelling vehicle using intelligence at intersections and other points on the vehicular network. The FBMkP opens up traffic by fully balancing the whole network so as to benefit every motorist. Whereas the EBkSP reserves some routes for cars on high priority, our algorithm distributes the benefits of smart routing to all vehicles on the network and serves the road side units such as induction loops and detectors from having to remember the urgency of each vehicle. Instead, detectors and induction loops simply have to poll the destination of the vehicle and not any urgency factor. The minimal data being processed significantly reduce computational times and the benefits all vehicles. The multiple-candidate shortest paths selected on the basis of current traffic status on each possible route increase the efficiency. Routes are fewer than vehicles so possessing weights of routes is smarter than processing individual vehicle weights. This is a multi-objective function project where improving one factor such as travel times improves many more cost, social and environmental factors.展开更多
基金This work was partially supported by the National Key R&D Program of China under Grant 2019YFB1803301the Key Research and Development Program of Shanxi under Grant 201903D121117+1 种基金Beijing Nova Program of Science and Technology under Grant Z191100001119028the National Natural Science Foundation of China under Grant 62001320.
文摘Re-routing system has become an important technology to improve traffic efficiency.The traditional re-routing schemes do not consider the dynamic characteristics of urban traffic,making the planned routes unable to cope with the changing traf-fic conditions.Based on real-time traffic information,it is challenging to dynamically re-route connected vehicles to alleviate traffic congestion.Moreover,how to obtain global traffic information while reducing communication costs and improving travel efficiency poses a challenge to the re-routing system.To deal with these challenges,this paper proposes CHRT,a clustering-based hybrid re-routing system for traffic congestion avoidance.CHRT develops a multi-layer hybrid architecture.The central server accesses the global view of traffic,and the distributed part is composed of vehicles divided into clusters to reduce latency and communication overhead.Then,a clustering-based priority mechanism is proposed,which sets priorities for clusters based on realtime traffic information to avoid secondary congestion.Furthermore,to plan the optimal routes for vehicles while alleviating global traffic congestion,this paper presents a multi-metric re-routing algorithm.Through extensive simulations based on the SUMO traffic simulator,CHRT reduces vehicle traveling time,fuel consumption,and CO2 emissions compared to other systems.In addition,CHRT globally alleviates traffic congestion and improves traffic efficiency.
文摘Seeking shortest travel times through smart algorithms may not only optimize the travel times but also reduce carbon emissions, such as CO2, CO and Hydro-Carbons. It can also result in reduced driver frustrations and can increase passenger expectations of consistent travel times, which in turn points to benefits in overall planning of day schedules. Fuel consumption savings are another benefit from the same. However, attempts to elect the shortest path as an assumption of quick travel times, often work counter to the very objective intended and come with the risk of creating a “Braess Paradox” which is about congestion resulting when several drivers attempt to elect the same shortest route. The situation that arises has been referred to as the price of anarchy! We propose algorithms that find multiple shortest paths between an origin and a destination. It must be appreciated that these will not yield the exact number of Kilometers travelled, but favourable weights in terms of travel times so that a reasonable allowable time difference between the multiple shortest paths is attained when the same Origin and Destinations are considered and favourable responsive routes are determined as variables of traffic levels and time of day. These routes are selected on the paradigm of route balancing, re-routing algorithms and traffic light intelligence all coming together to result in optimized consistent travel times whose benefits are evenly spread to all motorist, unlike the Entropy balanced k shortest paths (EBkSP) method which favours some motorists on the basis of urgency. This paper proposes a Fully Balanced Multiple-Candidate shortest path (FBMkP) by which we model in SUMO to overcome the computational overhead of assigning priority differently to each travelling vehicle using intelligence at intersections and other points on the vehicular network. The FBMkP opens up traffic by fully balancing the whole network so as to benefit every motorist. Whereas the EBkSP reserves some routes for cars on high priority, our algorithm distributes the benefits of smart routing to all vehicles on the network and serves the road side units such as induction loops and detectors from having to remember the urgency of each vehicle. Instead, detectors and induction loops simply have to poll the destination of the vehicle and not any urgency factor. The minimal data being processed significantly reduce computational times and the benefits all vehicles. The multiple-candidate shortest paths selected on the basis of current traffic status on each possible route increase the efficiency. Routes are fewer than vehicles so possessing weights of routes is smarter than processing individual vehicle weights. This is a multi-objective function project where improving one factor such as travel times improves many more cost, social and environmental factors.