This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from g...This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from graphic-centric processors to versatile computing units,it delves into the nuanced optimization of memory access,thread management,algorithmic design,and data structures.These optimizations are critical for exploiting the parallel processing capabilities of GPUs,addressingboth the theoretical frameworks and practical implementations.By integrating advanced strategies such as memory coalescing,dynamic scheduling,and parallel algorithmic transformations,this research aims to significantly elevate computational efficiency and throughput.The findings underscore the potential of optimized GPU programming to revolutionize computational tasks across various domains,highlighting a pathway towards achieving unparalleled processing power and efficiency in HPC environments.The paper not only contributes to the academic discourse on GPU optimization but also provides actionable insights for developers,fostering advancements in computational sciences and technology.展开更多
This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encounter...This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.展开更多
In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality o...In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.展开更多
Gasoline blending scheduling optimization can bring significant economic and efficient benefits to refineries.However,the optimization model is complex and difficult to build,which is a typical mixed integer nonlinear...Gasoline blending scheduling optimization can bring significant economic and efficient benefits to refineries.However,the optimization model is complex and difficult to build,which is a typical mixed integer nonlinear programming(MINLP)problem.Considering the large scale of the MINLP model,in order to improve the efficiency of the solution,the mixed integer linear programming-nonlinear programming(MILP-NLP)strategy is used to solve the problem.This paper uses the linear blending rules plus the blending effect correction to build the gasoline blending model,and a relaxed MILP model is constructed on this basis.The particle swarm optimization algorithm with niche technology(NPSO)is proposed to optimize the solution,and the high-precision soft-sensor method is used to calculate the deviation of gasoline attributes,the blending effect is dynamically corrected to ensure the accuracy of the blending effect and optimization results,thus forming a prediction-verification-reprediction closed-loop scheduling optimization strategy suitable for engineering applications.The optimization result of the MILP model provides a good initial point.By fixing the integer variables to the MILPoptimal value,the approximate MINLP optimal solution can be obtained through a NLP solution.The above solution strategy has been successfully applied to the actual gasoline production case of a refinery(3.5 million tons per year),and the results show that the strategy is effective and feasible.The optimization results based on the closed-loop scheduling optimization strategy have higher reliability.Compared with the standard particle swarm optimization algorithm,NPSO algorithm improves the optimization ability and efficiency to a certain extent,effectively reduces the blending cost while ensuring the convergence speed.展开更多
When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be op...When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be optimized. The existing Dolph-Chebyshev weighting method can get the lowest side lobe level under given main lobe width, but for the other non-uniform circular array and nonlinear array, the low side lobe pattern needs to be designed specially. The second order cone programming optimization (SOCP) algorithm proposed in the paper transforms the optimization of the beam pattern into a standard convex optimization problem. Thus there is a paradigm to follow for any array formation, which not only achieves the purpose of Dolph-Chebyshev weighting, but also solves the problem of the increased side lobe when the signal is at end fire direction The simulation proves that the SOCP algorithm can detect the weak target better than the conventional beam forming.展开更多
Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the...Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the OLP system. A new type of grinding robot and a novel robotic belt grinding workcell are forwarded, and their features are briefly introduced. An open and object-oriented off-line programming system is developed for this robotic belt grinding system. The parameters of the trimmed surface are read from the initial graphics exchange specification (IGES) file of the CAD model of the workpiece. The deBoor-Cox basis function is used to sample the grinding target with local contact frame on the workpiece. The numerical formula of inverse kinematics is set up based on Newton's iterative procedure, to calculate the grinding robot configurations corresponding to the grinding targets. After the grinding path is obtained, the OLP system turns to be more effective than the teach-by-showing system. In order to improve the grinding workspace, an optimization algorithm for dynamic tool frame is proposed and performed on the special robotic belt grinding system. The initial tool frame and the interval of neighboring tool frames are defined as the preparation of the algorithm. An optimized tool local frame can be selected to grind the complex surface for a maximum dexterity index of the robot. Under the optimization algorithm, a simulation of grinding a vane is included and comparison of grinding workspace is done before and after the tool frame optimization. By the algorithm, the grinding workspace can be enlarged. Moreover the dynamic tool frame can be considered to add one degree-of-freedom to the grinding kinematical chain, which provides the theoretical support for the improvement of robotic dexterity for the complex surface grinding.展开更多
A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems....A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.展开更多
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ...Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.展开更多
Topological optimization plays a guiding role in the conceptual design process.This paper conducts research on structural topology optimization algorithm within the framework of isogeometric analysis.For multi-compone...Topological optimization plays a guiding role in the conceptual design process.This paper conducts research on structural topology optimization algorithm within the framework of isogeometric analysis.For multi-component structures,the Nitsche’smethod is used to glue differentmeshes to performisogeometricmulti-patch analysis.The discrete variable topology optimization algorithm based on integer programming is adopted in order to obtain clear boundaries for topology optimization.The sensitivity filtering method based on the Helmholtz equation is employed for averaging of curved elements’sensitivities.In addition,a simple averaging method along coupling interfaces is proposed in order to ensure the material distribution across coupling areas is reasonably smooth.Finally,the performance of the algorithm is demonstrated by numerical examples,and the effectiveness of the algorithm is verified by comparing it with the results obtained by single-patch and ABAQUS cases.展开更多
Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained u...Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained under deterministic conditions may not be stable and economical. This paper studies the optimization of circulating cooling water systems under uncertain circumstance. To improve the reliability of the system and reduce the water and energy consumption, the influence of different uncertain parameters is taken into consideration. The chance constrained programming method is used to build a model under uncertain conditions, where the confidence level indicates the degree of constraint violation. Probability distribution functions are used to describe the form of uncertain parameters. The objective is to minimize the total cost and obtain the optimal cooling network configuration simultaneously.An algorithm based on Monte Carlo method is proposed, and GAMS software is used to solve the mixed integer nonlinear programming model. A case is optimized to verify the validity of the model. Compared with the deterministic optimization method, the results show that when considering the different types of uncertain parameters, a system with better economy and reliability can be obtained(total cost can be reduced at least 2%).展开更多
Discrete Tomography(DT)is a technology that uses image projection to reconstruct images.Its reconstruction problem,especially the binary image(0–1matrix)has attracted strong attention.In this study,a fixed point iter...Discrete Tomography(DT)is a technology that uses image projection to reconstruct images.Its reconstruction problem,especially the binary image(0–1matrix)has attracted strong attention.In this study,a fixed point iterative method of integer programming based on intelligent optimization is proposed to optimize the reconstructedmodel.The solution process can be divided into two procedures.First,the DT problem is reformulated into a polyhedron judgment problembased on lattice basis reduction.Second,the fixed-point iterativemethod of Dang and Ye is used to judge whether an integer point exists in the polyhedron of the previous program.All the programs involved in this study are written in MATLAB.The final experimental data show that this method is obviously better than the branch and bound method in terms of computational efficiency,especially in the case of high dimension.The branch and bound method requires more branch operations and takes a long time.It also needs to store a large number of leaf node boundaries and the corresponding consumptionmatrix,which occupies a largememory space.展开更多
To meet the requirements of specifications,intelligent optimization of steel bar blanking can improve resource utilization and promote the intelligent development of sustainable construction.As one of the most importa...To meet the requirements of specifications,intelligent optimization of steel bar blanking can improve resource utilization and promote the intelligent development of sustainable construction.As one of the most important building materials in construction engineering,reinforcing bars(rebar)account for more than 30%of the cost in civil engineering.A significant amount of cutting waste is generated during the construction phase.Excessive cutting waste increases construction costs and generates a considerable amount of CO_(2)emission.This study aimed to develop an optimization algorithm for steel bar blanking that can be used in the intelligent optimization of steel bar engineering to realize sustainable construction.In the proposed algorithm,the integer linear programming algorithm was applied to solve the problem.It was combined with the statistical method,a greedy strategy was introduced,and a method for determining the dynamic critical threshold was developed to ensure the accuracy of large-scale data calculation.The proposed algorithm was verified through a case study;the results confirmed that the rebar loss rate of the proposed method was reduced by 9.124%compared with that of traditional distributed processing of steel bars,reducing CO_(2)emissions and saving construction costs.As the scale of a project increases,the calculation quality of the optimization algorithmfor steel bar blanking proposed also increases,while maintaining high calculation efficiency.When the results of this study are applied in practice,they can be used as a sustainable foundation for building informatization and intelligent development.展开更多
This paper is based on the finite and dispersed data which were obtained from the experiments of the wind tunnel and of the force measurement and from the high-speed photography. It analyses and optimizes the take-off...This paper is based on the finite and dispersed data which were obtained from the experiments of the wind tunnel and of the force measurement and from the high-speed photography. It analyses and optimizes the take-off movement of ski jumping with the theory of dynamics of systems of rigid bodies and with the method of mathematical programming. The paper describes the optimal take-off movement of ski jumping. Furthermore, it presents an example and compares the result with those of other papers published at home and abroad. The comparison shows that our computation and optimization are reasonable and well-grounded.展开更多
Optimal trajectory planning for robot manipulators plays an important role in implementing the high productivity for robots. The performance indexes used in optimal trajectory planning are classified into two main cat...Optimal trajectory planning for robot manipulators plays an important role in implementing the high productivity for robots. The performance indexes used in optimal trajectory planning are classified into two main categories: optimum traveling time and optimum mechanical energy of the actuators. The current trajectory planning algorithms are designed based on one of the above two performance indexes. So far, there have been few planning algorithms designed to satisfy two performance indexes simultaneously. On the other hand, some deficiencies arise in the existing integrated optimi2ation algorithms of trajectory planning. In order to overcome those deficiencies, the integrated optimization algorithms of trajectory planning are presented based on the complete analysis for trajectory planning of robot manipulators. In the algorithm, two object functions are designed based on the specific weight coefficient method and ' ideal point strategy. Moreover, based on the features of optimization problem, the intensified evolutionary programming is proposed to solve the corresponding optimization model. Especially, for the Stanford Robot,the high-quality solutions are found at a lower cost.展开更多
In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas ...In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas networks.The demands between pipelines and compressor stations are uncertain with a budget parameter,since it is unlikely that all the uncertain demands reach the maximal deviation simultaneously.During solving the two-stage robust model we encounter a bilevel problem which is challenging to solve.We formulate it as a multi-dimensional dynamic programming problem and propose approximate dynamic programming methods to accelerate the calculation.Numerical results based on real network in China show that we obtain a speed gain of 7 times faster in average without compromising optimality compared with original dynamic programming algorithm.Numerical results also verify the advantage of robust model compared with deterministic model when facing uncertainties.These findings offer short-term operation methods for gunbarrel natural gas network management to handle with uncertainties.展开更多
Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,...Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology.展开更多
This paper introduces a practical solving scheme of gradetransition trajectory optimization(GTTO) problems under typical certificate-checking–updating framework. Due to complicated kinetics of polymerization,differen...This paper introduces a practical solving scheme of gradetransition trajectory optimization(GTTO) problems under typical certificate-checking–updating framework. Due to complicated kinetics of polymerization,differential/algebraic equations(DAEs) always cause great computational burden and system non-linearity usually makes GTTO non-convex bearing multiple optima. Therefore, coupled with the three-stage decomposition model, a three-section algorithm of dynamic programming(TSDP) is proposed based on the general iteration mechanism of iterative programming(IDP) and incorporated with adaptivegrid allocation scheme and heuristic modifications. The algorithm iteratively performs dynamic programming with heuristic modifications under constant calculation loads and adaptively allocates the valued computational resources to the regions that can further improve the optimality under the guidance of local error estimates. TSDP is finally compared with IDP and interior point method(IP) to verify its efficiency of computation.展开更多
The optimality criteria (OC) method and mathematical programming (MP) were combined to found the sectional optimization model of frame structures. Different methods were adopted to deal with the different constrai...The optimality criteria (OC) method and mathematical programming (MP) were combined to found the sectional optimization model of frame structures. Different methods were adopted to deal with the different constraints. The stress constraints as local constraints were approached by zero-order approximation and transformed into movable sectional lower limits with the full stress criterion. The displacement constraints as global constraints were transformed into explicit expressions with the unit virtual load method. Thus an approximate explicit model for the sectional optimization of frame structures was built with stress and displacement constraints. To improve the resolution efficiency, the dual-quadratic programming was adopted to transform the original optimization model into a dual problem according to the dual theory and solved iteratively in its dual space. A method called approximate scaling step was adopted to reduce computations and smooth the iterative process. Negative constraints were deleted to reduce the size of the optimization model. With MSC/Nastran software as structural solver and MSC/Patran software as developing platform, the sectional optimization software of frame structures was accomplished, considering stress and displacement constraints. The examples show that the efficiency and accuracy are improved.展开更多
Bin-objective shape optimization of arch dam based on linear programming model is discussed to minimize both dam volume and maximal tensile stress.The importance of weight coefficient of the above two objectives is ch...Bin-objective shape optimization of arch dam based on linear programming model is discussed to minimize both dam volume and maximal tensile stress.The importance of weight coefficient of the above two objectives is chosen according to the value of importance ratio.The influence of weight coefficient to the optimization result is discussed in detail and the numerical example shows that both the model and method proposed is doable.展开更多
Dynamic Programming (DP) algorithm is used to find the optimal trajectories under Beijing cycle for the power management of synergic electric system (SES) which is composed of battery and super capacitor. Feasible rul...Dynamic Programming (DP) algorithm is used to find the optimal trajectories under Beijing cycle for the power management of synergic electric system (SES) which is composed of battery and super capacitor. Feasible rules are derived from analyzing the optimal trajectories, and it has the highest contribution to Hybrid Electric Vehicle (HEV). The methods of how to get the best performance is also educed. Using the new Rule-based power management strat-egy adopted from the optimal results, it is easy to demonstrate the effectiveness of the new strategy in further improvement of the fuel economy by the synergic hybrid system.展开更多
文摘This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from graphic-centric processors to versatile computing units,it delves into the nuanced optimization of memory access,thread management,algorithmic design,and data structures.These optimizations are critical for exploiting the parallel processing capabilities of GPUs,addressingboth the theoretical frameworks and practical implementations.By integrating advanced strategies such as memory coalescing,dynamic scheduling,and parallel algorithmic transformations,this research aims to significantly elevate computational efficiency and throughput.The findings underscore the potential of optimized GPU programming to revolutionize computational tasks across various domains,highlighting a pathway towards achieving unparalleled processing power and efficiency in HPC environments.The paper not only contributes to the academic discourse on GPU optimization but also provides actionable insights for developers,fostering advancements in computational sciences and technology.
基金financially supported by the National Key R&D Program (2022YFB4201302)Guang Dong Basic and Applied Basic Research Foundation (2022A1515240057)the Huaneng Technology Funds (HNKJ20-H88).
文摘This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.
文摘In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.
基金supported by National Natural Science Foundation of China(Basic Science Center Program:61988101)Shanghai Committee of Science and Technology(22DZ1101500)+1 种基金the National Natural Science Foundation of China(61973124,62073142)Fundamental Research Funds for the Central Universities。
文摘Gasoline blending scheduling optimization can bring significant economic and efficient benefits to refineries.However,the optimization model is complex and difficult to build,which is a typical mixed integer nonlinear programming(MINLP)problem.Considering the large scale of the MINLP model,in order to improve the efficiency of the solution,the mixed integer linear programming-nonlinear programming(MILP-NLP)strategy is used to solve the problem.This paper uses the linear blending rules plus the blending effect correction to build the gasoline blending model,and a relaxed MILP model is constructed on this basis.The particle swarm optimization algorithm with niche technology(NPSO)is proposed to optimize the solution,and the high-precision soft-sensor method is used to calculate the deviation of gasoline attributes,the blending effect is dynamically corrected to ensure the accuracy of the blending effect and optimization results,thus forming a prediction-verification-reprediction closed-loop scheduling optimization strategy suitable for engineering applications.The optimization result of the MILP model provides a good initial point.By fixing the integer variables to the MILPoptimal value,the approximate MINLP optimal solution can be obtained through a NLP solution.The above solution strategy has been successfully applied to the actual gasoline production case of a refinery(3.5 million tons per year),and the results show that the strategy is effective and feasible.The optimization results based on the closed-loop scheduling optimization strategy have higher reliability.Compared with the standard particle swarm optimization algorithm,NPSO algorithm improves the optimization ability and efficiency to a certain extent,effectively reduces the blending cost while ensuring the convergence speed.
基金Special Item of National Major Scientific Apparatus Development(No.2013YQ140431)
文摘When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be optimized. The existing Dolph-Chebyshev weighting method can get the lowest side lobe level under given main lobe width, but for the other non-uniform circular array and nonlinear array, the low side lobe pattern needs to be designed specially. The second order cone programming optimization (SOCP) algorithm proposed in the paper transforms the optimization of the beam pattern into a standard convex optimization problem. Thus there is a paradigm to follow for any array formation, which not only achieves the purpose of Dolph-Chebyshev weighting, but also solves the problem of the increased side lobe when the signal is at end fire direction The simulation proves that the SOCP algorithm can detect the weak target better than the conventional beam forming.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z2443)State Key Laboratory for Man ufacturing Systems Engineering of Xi’an Jiaotong University of China
文摘Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the OLP system. A new type of grinding robot and a novel robotic belt grinding workcell are forwarded, and their features are briefly introduced. An open and object-oriented off-line programming system is developed for this robotic belt grinding system. The parameters of the trimmed surface are read from the initial graphics exchange specification (IGES) file of the CAD model of the workpiece. The deBoor-Cox basis function is used to sample the grinding target with local contact frame on the workpiece. The numerical formula of inverse kinematics is set up based on Newton's iterative procedure, to calculate the grinding robot configurations corresponding to the grinding targets. After the grinding path is obtained, the OLP system turns to be more effective than the teach-by-showing system. In order to improve the grinding workspace, an optimization algorithm for dynamic tool frame is proposed and performed on the special robotic belt grinding system. The initial tool frame and the interval of neighboring tool frames are defined as the preparation of the algorithm. An optimized tool local frame can be selected to grind the complex surface for a maximum dexterity index of the robot. Under the optimization algorithm, a simulation of grinding a vane is included and comparison of grinding workspace is done before and after the tool frame optimization. By the algorithm, the grinding workspace can be enlarged. Moreover the dynamic tool frame can be considered to add one degree-of-freedom to the grinding kinematical chain, which provides the theoretical support for the improvement of robotic dexterity for the complex surface grinding.
基金Projects(50275150,61173052) supported by the National Natural Science Foundation of ChinaProject(14FJ3112) supported by the Planned Science and Technology of Hunan Province,ChinaProject(14B033) supported by Scientific Research Fund Education Department of Hunan Province,China
文摘A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.
基金supported in part by the National Natural Science Foundation of China(62222301, 62073085, 62073158, 61890930-5, 62021003)the National Key Research and Development Program of China (2021ZD0112302, 2021ZD0112301, 2018YFC1900800-5)Beijing Natural Science Foundation (JQ19013)。
文摘Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
基金supported by the Fundamental Research Funds for the Cen-tral Universities(No.JUSRP12038)the Natural Science Foundation of Jiangsu Province(No.BK20200611)the National Natural Science Foundation of China(No.12102146).
文摘Topological optimization plays a guiding role in the conceptual design process.This paper conducts research on structural topology optimization algorithm within the framework of isogeometric analysis.For multi-component structures,the Nitsche’smethod is used to glue differentmeshes to performisogeometricmulti-patch analysis.The discrete variable topology optimization algorithm based on integer programming is adopted in order to obtain clear boundaries for topology optimization.The sensitivity filtering method based on the Helmholtz equation is employed for averaging of curved elements’sensitivities.In addition,a simple averaging method along coupling interfaces is proposed in order to ensure the material distribution across coupling areas is reasonably smooth.Finally,the performance of the algorithm is demonstrated by numerical examples,and the effectiveness of the algorithm is verified by comparing it with the results obtained by single-patch and ABAQUS cases.
基金Financial support from the National Natural Science Foundation of China (22022816, 22078358)。
文摘Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained under deterministic conditions may not be stable and economical. This paper studies the optimization of circulating cooling water systems under uncertain circumstance. To improve the reliability of the system and reduce the water and energy consumption, the influence of different uncertain parameters is taken into consideration. The chance constrained programming method is used to build a model under uncertain conditions, where the confidence level indicates the degree of constraint violation. Probability distribution functions are used to describe the form of uncertain parameters. The objective is to minimize the total cost and obtain the optimal cooling network configuration simultaneously.An algorithm based on Monte Carlo method is proposed, and GAMS software is used to solve the mixed integer nonlinear programming model. A case is optimized to verify the validity of the model. Compared with the deterministic optimization method, the results show that when considering the different types of uncertain parameters, a system with better economy and reliability can be obtained(total cost can be reduced at least 2%).
基金funded by the NSFC under Grant Nos.61803279,71471091,62003231 and 51874205in part by the Qing Lan Project of Jiangsu,in part by the China Postdoctoral Science Foundation under Grant Nos.2020M671596 and 2021M692369+2 种基金in part by the Suzhou Science and Technology Development Plan Project(Key Industry Technology Innovation)under Grant No.SYG202114in part by the Natural Science Foundation of Jiangsu Province under Grant No.BK20200989Postdoctoral Research Funding Program of Jiangsu Province.
文摘Discrete Tomography(DT)is a technology that uses image projection to reconstruct images.Its reconstruction problem,especially the binary image(0–1matrix)has attracted strong attention.In this study,a fixed point iterative method of integer programming based on intelligent optimization is proposed to optimize the reconstructedmodel.The solution process can be divided into two procedures.First,the DT problem is reformulated into a polyhedron judgment problembased on lattice basis reduction.Second,the fixed-point iterativemethod of Dang and Ye is used to judge whether an integer point exists in the polyhedron of the previous program.All the programs involved in this study are written in MATLAB.The final experimental data show that this method is obviously better than the branch and bound method in terms of computational efficiency,especially in the case of high dimension.The branch and bound method requires more branch operations and takes a long time.It also needs to store a large number of leaf node boundaries and the corresponding consumptionmatrix,which occupies a largememory space.
基金funded by Nature Science Foundation of China(51878556)the Key Scientific Research Projects of Shaanxi Provincial Department of Education(20JY049)+1 种基金Key Research and Development Program of Shaanxi Province(2019TD-014)State Key Laboratory of Rail Transit Engineering Informatization(FSDI)(SKLKZ21-03).
文摘To meet the requirements of specifications,intelligent optimization of steel bar blanking can improve resource utilization and promote the intelligent development of sustainable construction.As one of the most important building materials in construction engineering,reinforcing bars(rebar)account for more than 30%of the cost in civil engineering.A significant amount of cutting waste is generated during the construction phase.Excessive cutting waste increases construction costs and generates a considerable amount of CO_(2)emission.This study aimed to develop an optimization algorithm for steel bar blanking that can be used in the intelligent optimization of steel bar engineering to realize sustainable construction.In the proposed algorithm,the integer linear programming algorithm was applied to solve the problem.It was combined with the statistical method,a greedy strategy was introduced,and a method for determining the dynamic critical threshold was developed to ensure the accuracy of large-scale data calculation.The proposed algorithm was verified through a case study;the results confirmed that the rebar loss rate of the proposed method was reduced by 9.124%compared with that of traditional distributed processing of steel bars,reducing CO_(2)emissions and saving construction costs.As the scale of a project increases,the calculation quality of the optimization algorithmfor steel bar blanking proposed also increases,while maintaining high calculation efficiency.When the results of this study are applied in practice,they can be used as a sustainable foundation for building informatization and intelligent development.
基金Project supported by the National Natutal Science Foundation of China
文摘This paper is based on the finite and dispersed data which were obtained from the experiments of the wind tunnel and of the force measurement and from the high-speed photography. It analyses and optimizes the take-off movement of ski jumping with the theory of dynamics of systems of rigid bodies and with the method of mathematical programming. The paper describes the optimal take-off movement of ski jumping. Furthermore, it presents an example and compares the result with those of other papers published at home and abroad. The comparison shows that our computation and optimization are reasonable and well-grounded.
基金This work was supported in part by National Natural Science Foundation of China (No. 69975003) and Foundation for Dissertation of Ph. D. Candidate of Central South University (No.030618) .
文摘Optimal trajectory planning for robot manipulators plays an important role in implementing the high productivity for robots. The performance indexes used in optimal trajectory planning are classified into two main categories: optimum traveling time and optimum mechanical energy of the actuators. The current trajectory planning algorithms are designed based on one of the above two performance indexes. So far, there have been few planning algorithms designed to satisfy two performance indexes simultaneously. On the other hand, some deficiencies arise in the existing integrated optimi2ation algorithms of trajectory planning. In order to overcome those deficiencies, the integrated optimization algorithms of trajectory planning are presented based on the complete analysis for trajectory planning of robot manipulators. In the algorithm, two object functions are designed based on the specific weight coefficient method and ' ideal point strategy. Moreover, based on the features of optimization problem, the intensified evolutionary programming is proposed to solve the corresponding optimization model. Especially, for the Stanford Robot,the high-quality solutions are found at a lower cost.
基金partially supported by the National Science Foundation of China(Grants 71822105 and 91746210)。
文摘In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas networks.The demands between pipelines and compressor stations are uncertain with a budget parameter,since it is unlikely that all the uncertain demands reach the maximal deviation simultaneously.During solving the two-stage robust model we encounter a bilevel problem which is challenging to solve.We formulate it as a multi-dimensional dynamic programming problem and propose approximate dynamic programming methods to accelerate the calculation.Numerical results based on real network in China show that we obtain a speed gain of 7 times faster in average without compromising optimality compared with original dynamic programming algorithm.Numerical results also verify the advantage of robust model compared with deterministic model when facing uncertainties.These findings offer short-term operation methods for gunbarrel natural gas network management to handle with uncertainties.
基金supported by the National Natural Science Foundation of China (No.42172343)。
文摘Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology.
基金Supported by the National Basic Research Program of China(2012CB720500)the National High Technology Research and Development Program of China(2013AA040702)
文摘This paper introduces a practical solving scheme of gradetransition trajectory optimization(GTTO) problems under typical certificate-checking–updating framework. Due to complicated kinetics of polymerization,differential/algebraic equations(DAEs) always cause great computational burden and system non-linearity usually makes GTTO non-convex bearing multiple optima. Therefore, coupled with the three-stage decomposition model, a three-section algorithm of dynamic programming(TSDP) is proposed based on the general iteration mechanism of iterative programming(IDP) and incorporated with adaptivegrid allocation scheme and heuristic modifications. The algorithm iteratively performs dynamic programming with heuristic modifications under constant calculation loads and adaptively allocates the valued computational resources to the regions that can further improve the optimality under the guidance of local error estimates. TSDP is finally compared with IDP and interior point method(IP) to verify its efficiency of computation.
基金Project supported by the National Natural Science Foundation of China(No. 10472003) the Natural Science Foundation of Beijing(No.3002002) the Science Foundation of Beijing Municipal Commission of Education(No.KM200410005019)
文摘The optimality criteria (OC) method and mathematical programming (MP) were combined to found the sectional optimization model of frame structures. Different methods were adopted to deal with the different constraints. The stress constraints as local constraints were approached by zero-order approximation and transformed into movable sectional lower limits with the full stress criterion. The displacement constraints as global constraints were transformed into explicit expressions with the unit virtual load method. Thus an approximate explicit model for the sectional optimization of frame structures was built with stress and displacement constraints. To improve the resolution efficiency, the dual-quadratic programming was adopted to transform the original optimization model into a dual problem according to the dual theory and solved iteratively in its dual space. A method called approximate scaling step was adopted to reduce computations and smooth the iterative process. Negative constraints were deleted to reduce the size of the optimization model. With MSC/Nastran software as structural solver and MSC/Patran software as developing platform, the sectional optimization software of frame structures was accomplished, considering stress and displacement constraints. The examples show that the efficiency and accuracy are improved.
基金Sponsored by the National Natural Science Foundation of China(Grant.50139010).
文摘Bin-objective shape optimization of arch dam based on linear programming model is discussed to minimize both dam volume and maximal tensile stress.The importance of weight coefficient of the above two objectives is chosen according to the value of importance ratio.The influence of weight coefficient to the optimization result is discussed in detail and the numerical example shows that both the model and method proposed is doable.
文摘Dynamic Programming (DP) algorithm is used to find the optimal trajectories under Beijing cycle for the power management of synergic electric system (SES) which is composed of battery and super capacitor. Feasible rules are derived from analyzing the optimal trajectories, and it has the highest contribution to Hybrid Electric Vehicle (HEV). The methods of how to get the best performance is also educed. Using the new Rule-based power management strat-egy adopted from the optimal results, it is easy to demonstrate the effectiveness of the new strategy in further improvement of the fuel economy by the synergic hybrid system.