期刊文献+
共找到8,646篇文章
< 1 2 250 >
每页显示 20 50 100
Optimization Techniques for GPU-Based Parallel Programming Models in High-Performance Computing
1
作者 Shuntao Tang Wei Chen 《信息工程期刊(中英文版)》 2024年第1期7-11,共5页
This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from g... This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from graphic-centric processors to versatile computing units,it delves into the nuanced optimization of memory access,thread management,algorithmic design,and data structures.These optimizations are critical for exploiting the parallel processing capabilities of GPUs,addressingboth the theoretical frameworks and practical implementations.By integrating advanced strategies such as memory coalescing,dynamic scheduling,and parallel algorithmic transformations,this research aims to significantly elevate computational efficiency and throughput.The findings underscore the potential of optimized GPU programming to revolutionize computational tasks across various domains,highlighting a pathway towards achieving unparalleled processing power and efficiency in HPC environments.The paper not only contributes to the academic discourse on GPU optimization but also provides actionable insights for developers,fostering advancements in computational sciences and technology. 展开更多
关键词 optimization Techniques GPU-Based Parallel programming Models High-Performance Computing
下载PDF
An Overview of Sequential Approximation in Topology Optimization of Continuum Structure
2
作者 Kai Long Ayesha Saeed +6 位作者 Jinhua Zhang Yara Diaeldin Feiyu Lu Tao Tao Yuhua Li Pengwen Sun Jinshun Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期43-67,共25页
This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encounter... This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research. 展开更多
关键词 Topology optimization sequential approximate optimization convex linearization method ofmoving asymptotes sequential quadratic programming
下载PDF
A Modified Lagrange Method for Solving Convex Quadratic Optimization Problems
3
作者 Twum B. Stephen Avoka John Christian J. Etwire 《Open Journal of Optimization》 2024年第1期1-20,共20页
In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality o... In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions. 展开更多
关键词 Quadratic programming Lagrangian Function Lagrange Multipliers optimality Conditions Subsidiary Equations Modified Lagrange Method
下载PDF
Closed-loop scheduling optimization strategy based on particle swarm optimization with niche technology and soft sensor method of attributes-applied to gasoline blending process 被引量:1
4
作者 Jian Long Kai Deng Renchu He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期43-57,共15页
Gasoline blending scheduling optimization can bring significant economic and efficient benefits to refineries.However,the optimization model is complex and difficult to build,which is a typical mixed integer nonlinear... Gasoline blending scheduling optimization can bring significant economic and efficient benefits to refineries.However,the optimization model is complex and difficult to build,which is a typical mixed integer nonlinear programming(MINLP)problem.Considering the large scale of the MINLP model,in order to improve the efficiency of the solution,the mixed integer linear programming-nonlinear programming(MILP-NLP)strategy is used to solve the problem.This paper uses the linear blending rules plus the blending effect correction to build the gasoline blending model,and a relaxed MILP model is constructed on this basis.The particle swarm optimization algorithm with niche technology(NPSO)is proposed to optimize the solution,and the high-precision soft-sensor method is used to calculate the deviation of gasoline attributes,the blending effect is dynamically corrected to ensure the accuracy of the blending effect and optimization results,thus forming a prediction-verification-reprediction closed-loop scheduling optimization strategy suitable for engineering applications.The optimization result of the MILP model provides a good initial point.By fixing the integer variables to the MILPoptimal value,the approximate MINLP optimal solution can be obtained through a NLP solution.The above solution strategy has been successfully applied to the actual gasoline production case of a refinery(3.5 million tons per year),and the results show that the strategy is effective and feasible.The optimization results based on the closed-loop scheduling optimization strategy have higher reliability.Compared with the standard particle swarm optimization algorithm,NPSO algorithm improves the optimization ability and efficiency to a certain extent,effectively reduces the blending cost while ensuring the convergence speed. 展开更多
关键词 BLEND optimization algorithm Neural networks Particle swarm optimization Mixed integer programming
下载PDF
Anti-interference beam pattern design based on second-order cone programming optimization 被引量:1
5
作者 戴文舒 鲍凯凯 +1 位作者 王萍 王黎明 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第3期255-260,共6页
When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be op... When signal-to-interference ratio is low, the energy of strong interference leaked from the side lobe of beam pattern will infect the detection of weak target. Therefore, the beam pattern needs to be optimized. The existing Dolph-Chebyshev weighting method can get the lowest side lobe level under given main lobe width, but for the other non-uniform circular array and nonlinear array, the low side lobe pattern needs to be designed specially. The second order cone programming optimization (SOCP) algorithm proposed in the paper transforms the optimization of the beam pattern into a standard convex optimization problem. Thus there is a paradigm to follow for any array formation, which not only achieves the purpose of Dolph-Chebyshev weighting, but also solves the problem of the increased side lobe when the signal is at end fire direction The simulation proves that the SOCP algorithm can detect the weak target better than the conventional beam forming. 展开更多
关键词 anti-interference beam pattern second-order cone programming optimization (SOCP) weak signal detection
下载PDF
Designing and Optimization of an Off-line Programming System for Robotic Belt Grinding Process 被引量:11
6
作者 WANG Wei YUN Chao +1 位作者 ZHANG Ling GAO Zhihui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期647-655,共9页
Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the... Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the OLP system. A new type of grinding robot and a novel robotic belt grinding workcell are forwarded, and their features are briefly introduced. An open and object-oriented off-line programming system is developed for this robotic belt grinding system. The parameters of the trimmed surface are read from the initial graphics exchange specification (IGES) file of the CAD model of the workpiece. The deBoor-Cox basis function is used to sample the grinding target with local contact frame on the workpiece. The numerical formula of inverse kinematics is set up based on Newton's iterative procedure, to calculate the grinding robot configurations corresponding to the grinding targets. After the grinding path is obtained, the OLP system turns to be more effective than the teach-by-showing system. In order to improve the grinding workspace, an optimization algorithm for dynamic tool frame is proposed and performed on the special robotic belt grinding system. The initial tool frame and the interval of neighboring tool frames are defined as the preparation of the algorithm. An optimized tool local frame can be selected to grind the complex surface for a maximum dexterity index of the robot. Under the optimization algorithm, a simulation of grinding a vane is included and comparison of grinding workspace is done before and after the tool frame optimization. By the algorithm, the grinding workspace can be enlarged. Moreover the dynamic tool frame can be considered to add one degree-of-freedom to the grinding kinematical chain, which provides the theoretical support for the improvement of robotic dexterity for the complex surface grinding. 展开更多
关键词 off-line programming robotic belt grinding path generation tool optimization
下载PDF
Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems 被引量:20
7
作者 谭跃 谭冠政 邓曙光 《Journal of Central South University》 SCIE EI CAS 2014年第7期2731-2742,共12页
A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.... A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions. 展开更多
关键词 particle swarm optimization chaotic search integer programming problem mixed integer programming problem
下载PDF
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications 被引量:4
8
作者 Ding Wang Ning Gao +2 位作者 Derong Liu Jinna Li Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期18-36,共19页
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence. 展开更多
关键词 Adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL)
下载PDF
Multi-Patch Black-White Topology Optimization in Isogeometric Analysis
9
作者 Qingyuan Hu Yuan Liang +2 位作者 Menghao Liu Manfeng Hu Yawen Mao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期459-481,共23页
Topological optimization plays a guiding role in the conceptual design process.This paper conducts research on structural topology optimization algorithm within the framework of isogeometric analysis.For multi-compone... Topological optimization plays a guiding role in the conceptual design process.This paper conducts research on structural topology optimization algorithm within the framework of isogeometric analysis.For multi-component structures,the Nitsche’smethod is used to glue differentmeshes to performisogeometricmulti-patch analysis.The discrete variable topology optimization algorithm based on integer programming is adopted in order to obtain clear boundaries for topology optimization.The sensitivity filtering method based on the Helmholtz equation is employed for averaging of curved elements’sensitivities.In addition,a simple averaging method along coupling interfaces is proposed in order to ensure the material distribution across coupling areas is reasonably smooth.Finally,the performance of the algorithm is demonstrated by numerical examples,and the effectiveness of the algorithm is verified by comparing it with the results obtained by single-patch and ABAQUS cases. 展开更多
关键词 Isogeometric topology optimization nitsche multi-patch integer programming
下载PDF
Optimization of circulating cooling water systems based on chance constrained programming 被引量:3
10
作者 Bo Liu Yufei Wang Xiao Feng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期167-178,共12页
Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained u... Recent research on deterministic methods for circulating cooling water systems optimization has been well developed. However, the actual operating conditions of the system are mostly variable, so the system obtained under deterministic conditions may not be stable and economical. This paper studies the optimization of circulating cooling water systems under uncertain circumstance. To improve the reliability of the system and reduce the water and energy consumption, the influence of different uncertain parameters is taken into consideration. The chance constrained programming method is used to build a model under uncertain conditions, where the confidence level indicates the degree of constraint violation. Probability distribution functions are used to describe the form of uncertain parameters. The objective is to minimize the total cost and obtain the optimal cooling network configuration simultaneously.An algorithm based on Monte Carlo method is proposed, and GAMS software is used to solve the mixed integer nonlinear programming model. A case is optimized to verify the validity of the model. Compared with the deterministic optimization method, the results show that when considering the different types of uncertain parameters, a system with better economy and reliability can be obtained(total cost can be reduced at least 2%). 展开更多
关键词 Circulating cooling water system UNCERTAINTY Chance constrained programming DESIGN optimization SIMULATION
下载PDF
A Fixed-Point Iterative Method for Discrete Tomography Reconstruction Based on Intelligent Optimization
11
作者 Luyao Yang Hao Chen +2 位作者 Haocheng Yu Jin Qiu Shuxian Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期731-745,共15页
Discrete Tomography(DT)is a technology that uses image projection to reconstruct images.Its reconstruction problem,especially the binary image(0–1matrix)has attracted strong attention.In this study,a fixed point iter... Discrete Tomography(DT)is a technology that uses image projection to reconstruct images.Its reconstruction problem,especially the binary image(0–1matrix)has attracted strong attention.In this study,a fixed point iterative method of integer programming based on intelligent optimization is proposed to optimize the reconstructedmodel.The solution process can be divided into two procedures.First,the DT problem is reformulated into a polyhedron judgment problembased on lattice basis reduction.Second,the fixed-point iterativemethod of Dang and Ye is used to judge whether an integer point exists in the polyhedron of the previous program.All the programs involved in this study are written in MATLAB.The final experimental data show that this method is obviously better than the branch and bound method in terms of computational efficiency,especially in the case of high dimension.The branch and bound method requires more branch operations and takes a long time.It also needs to store a large number of leaf node boundaries and the corresponding consumptionmatrix,which occupies a largememory space. 展开更多
关键词 Discrete tomography integer programming fixed-point iterative algorithm intelligent optimization lattice basis reduction
下载PDF
An Intelligent Optimization Method of Reinforcing Bar Cutting for Construction Site
12
作者 Zhaoxi Ma Qin Zhao +3 位作者 Tianyou Cang Zongjian Li Yiyun Zhu Xinhong Hei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期637-655,共19页
To meet the requirements of specifications,intelligent optimization of steel bar blanking can improve resource utilization and promote the intelligent development of sustainable construction.As one of the most importa... To meet the requirements of specifications,intelligent optimization of steel bar blanking can improve resource utilization and promote the intelligent development of sustainable construction.As one of the most important building materials in construction engineering,reinforcing bars(rebar)account for more than 30%of the cost in civil engineering.A significant amount of cutting waste is generated during the construction phase.Excessive cutting waste increases construction costs and generates a considerable amount of CO_(2)emission.This study aimed to develop an optimization algorithm for steel bar blanking that can be used in the intelligent optimization of steel bar engineering to realize sustainable construction.In the proposed algorithm,the integer linear programming algorithm was applied to solve the problem.It was combined with the statistical method,a greedy strategy was introduced,and a method for determining the dynamic critical threshold was developed to ensure the accuracy of large-scale data calculation.The proposed algorithm was verified through a case study;the results confirmed that the rebar loss rate of the proposed method was reduced by 9.124%compared with that of traditional distributed processing of steel bars,reducing CO_(2)emissions and saving construction costs.As the scale of a project increases,the calculation quality of the optimization algorithmfor steel bar blanking proposed also increases,while maintaining high calculation efficiency.When the results of this study are applied in practice,they can be used as a sustainable foundation for building informatization and intelligent development. 展开更多
关键词 Building construction rebar work cutting stock problem optimization algorithm integer linear programming
下载PDF
OPTIMIZATION OF THE TAKE-OFF MOVEMENT OF SKI JUMPING WITH THE METHOD OF MATHEMATICAL PROGRAMMING 被引量:1
13
作者 关汝华 李润 于立然 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1992年第7期669-674,共6页
This paper is based on the finite and dispersed data which were obtained from the experiments of the wind tunnel and of the force measurement and from the high-speed photography. It analyses and optimizes the take-off... This paper is based on the finite and dispersed data which were obtained from the experiments of the wind tunnel and of the force measurement and from the high-speed photography. It analyses and optimizes the take-off movement of ski jumping with the theory of dynamics of systems of rigid bodies and with the method of mathematical programming. The paper describes the optimal take-off movement of ski jumping. Furthermore, it presents an example and compares the result with those of other papers published at home and abroad. The comparison shows that our computation and optimization are reasonable and well-grounded. 展开更多
关键词 Mathematical programming optimization Ski jumps
下载PDF
Novel integrated optimization algorithm for trajectory planning of robot manipulators based on integrated evolutionary programming 被引量:1
14
作者 XiongLUO XiaopingFAN HengZHANG TefangCHEN 《控制理论与应用(英文版)》 EI 2004年第4期319-331,共13页
Optimal trajectory planning for robot manipulators plays an important role in implementing the high productivity for robots. The performance indexes used in optimal trajectory planning are classified into two main cat... Optimal trajectory planning for robot manipulators plays an important role in implementing the high productivity for robots. The performance indexes used in optimal trajectory planning are classified into two main categories: optimum traveling time and optimum mechanical energy of the actuators. The current trajectory planning algorithms are designed based on one of the above two performance indexes. So far, there have been few planning algorithms designed to satisfy two performance indexes simultaneously. On the other hand, some deficiencies arise in the existing integrated optimi2ation algorithms of trajectory planning. In order to overcome those deficiencies, the integrated optimization algorithms of trajectory planning are presented based on the complete analysis for trajectory planning of robot manipulators. In the algorithm, two object functions are designed based on the specific weight coefficient method and ' ideal point strategy. Moreover, based on the features of optimization problem, the intensified evolutionary programming is proposed to solve the corresponding optimization model. Especially, for the Stanford Robot,the high-quality solutions are found at a lower cost. 展开更多
关键词 Trajectory planning Integrated optimization Evolutionary programming Robot manipulator
下载PDF
Two-stage robust optimization of power cost minimization problem in gunbarrel natural gas networks by approximate dynamic programming 被引量:1
15
作者 Yi-Ze Meng Ruo-Ran Chen Tian-Hu Deng 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2497-2517,共21页
In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas ... In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas networks.The demands between pipelines and compressor stations are uncertain with a budget parameter,since it is unlikely that all the uncertain demands reach the maximal deviation simultaneously.During solving the two-stage robust model we encounter a bilevel problem which is challenging to solve.We formulate it as a multi-dimensional dynamic programming problem and propose approximate dynamic programming methods to accelerate the calculation.Numerical results based on real network in China show that we obtain a speed gain of 7 times faster in average without compromising optimality compared with original dynamic programming algorithm.Numerical results also verify the advantage of robust model compared with deterministic model when facing uncertainties.These findings offer short-term operation methods for gunbarrel natural gas network management to handle with uncertainties. 展开更多
关键词 Natural gas Gunbarrel gas pipeline networks Robust optimization Approximate dynamic programming
下载PDF
Optimized parameters of downhole all-metal PDM based on genetic algorithm
16
作者 Jia-Xing Lu Ling-Rong Kong +2 位作者 Yu Wang Chao Feng Yu-Lin Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2663-2676,共14页
Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,... Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology. 展开更多
关键词 Positive displacement motor Genetic algorithm Profile optimization Matlab programming Overflow area
下载PDF
A Three-section Algorithm of Dynamic Programming Based on Three-stage Decomposition System Model for Grade Transition Trajectory Optimization Problems
17
作者 魏宇杰 江永亨 黄德先 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第10期1122-1130,共9页
This paper introduces a practical solving scheme of gradetransition trajectory optimization(GTTO) problems under typical certificate-checking–updating framework. Due to complicated kinetics of polymerization,differen... This paper introduces a practical solving scheme of gradetransition trajectory optimization(GTTO) problems under typical certificate-checking–updating framework. Due to complicated kinetics of polymerization,differential/algebraic equations(DAEs) always cause great computational burden and system non-linearity usually makes GTTO non-convex bearing multiple optima. Therefore, coupled with the three-stage decomposition model, a three-section algorithm of dynamic programming(TSDP) is proposed based on the general iteration mechanism of iterative programming(IDP) and incorporated with adaptivegrid allocation scheme and heuristic modifications. The algorithm iteratively performs dynamic programming with heuristic modifications under constant calculation loads and adaptively allocates the valued computational resources to the regions that can further improve the optimality under the guidance of local error estimates. TSDP is finally compared with IDP and interior point method(IP) to verify its efficiency of computation. 展开更多
关键词 Gradetransition TRAJECTORY optimization Adaptivegrid ALLOCATION HEURISTIC modifications Three-section dynamic programming Three-stage DECOMPOSITION model
下载PDF
METHOD BASED ON DUAL-QUADRATIC PROGRAMMING FOR FRAME STRUCTURAL OPTIMIZATION WITH LARGE SCALE
18
作者 隋允康 杜家政 郭英乔 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第3期383-391,共9页
The optimality criteria (OC) method and mathematical programming (MP) were combined to found the sectional optimization model of frame structures. Different methods were adopted to deal with the different constrai... The optimality criteria (OC) method and mathematical programming (MP) were combined to found the sectional optimization model of frame structures. Different methods were adopted to deal with the different constraints. The stress constraints as local constraints were approached by zero-order approximation and transformed into movable sectional lower limits with the full stress criterion. The displacement constraints as global constraints were transformed into explicit expressions with the unit virtual load method. Thus an approximate explicit model for the sectional optimization of frame structures was built with stress and displacement constraints. To improve the resolution efficiency, the dual-quadratic programming was adopted to transform the original optimization model into a dual problem according to the dual theory and solved iteratively in its dual space. A method called approximate scaling step was adopted to reduce computations and smooth the iterative process. Negative constraints were deleted to reduce the size of the optimization model. With MSC/Nastran software as structural solver and MSC/Patran software as developing platform, the sectional optimization software of frame structures was accomplished, considering stress and displacement constraints. The examples show that the efficiency and accuracy are improved. 展开更多
关键词 frame structures sectional optimization dual-quadratic programming approximate scaling step deletion of negative constraints
下载PDF
Bin-objective shape optimization based on linear programming model of arch dam
19
作者 金海 林皋 阳明盛 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第3期436-439,共4页
Bin-objective shape optimization of arch dam based on linear programming model is discussed to minimize both dam volume and maximal tensile stress.The importance of weight coefficient of the above two objectives is ch... Bin-objective shape optimization of arch dam based on linear programming model is discussed to minimize both dam volume and maximal tensile stress.The importance of weight coefficient of the above two objectives is chosen according to the value of importance ratio.The influence of weight coefficient to the optimization result is discussed in detail and the numerical example shows that both the model and method proposed is doable. 展开更多
关键词 optimization arch dam linear programming bin-objective
下载PDF
Control strategy optimization using dynamic programming method for synergic electric system on hybrid electric vehicle
20
作者 Yuan-Bin Yu Qing-Nian Wang +2 位作者 Hai-Tao Min Peng-Yu Wang Chun-Guang Hao 《Natural Science》 2009年第3期222-228,共7页
Dynamic Programming (DP) algorithm is used to find the optimal trajectories under Beijing cycle for the power management of synergic electric system (SES) which is composed of battery and super capacitor. Feasible rul... Dynamic Programming (DP) algorithm is used to find the optimal trajectories under Beijing cycle for the power management of synergic electric system (SES) which is composed of battery and super capacitor. Feasible rules are derived from analyzing the optimal trajectories, and it has the highest contribution to Hybrid Electric Vehicle (HEV). The methods of how to get the best performance is also educed. Using the new Rule-based power management strat-egy adopted from the optimal results, it is easy to demonstrate the effectiveness of the new strategy in further improvement of the fuel economy by the synergic hybrid system. 展开更多
关键词 DYNAMIC programMING Control STRATEGY optimization Synergic ELECTRIC System HEV
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部