Surface-enhanced Raman spectroscopy(SERS), a powerful surface vibrational spectroscopic technique, is ideally suited for in situ monitoring the chemical transformations occurred at surfaces and/or interfaces.For in si...Surface-enhanced Raman spectroscopy(SERS), a powerful surface vibrational spectroscopic technique, is ideally suited for in situ monitoring the chemical transformations occurred at surfaces and/or interfaces.For in situ SERS monitoring, a platform integrated both plasmonic and catalytic activity is a prerequisite. Here, we fabricate a bifunctional Au-Pd nanocoronal film for in situ SERS monitoring Suzuki-Miyaura cross-coupling reaction. This excellent bifunctional substrate leads to the coupling of high catalytic activity with a strong SERS effect at the center of two adjacent Au cores and shows fine reproducibility and stability of SERS signals. During investigating the Suzuki reaction with in situ SERS, we found two distinct catalytic kinetic processes resulted from two disparate catalytic sites on a Au-Pd nanocoronal. Comparing with conventional analytical techniques, this work provides a novel approach for studying Suzuki reactions at surfaces and/or interfaces with in situ SERS.展开更多
Infrared spectrum is a general quantitation method which can be used to determine the concentration of a certain component in mixture.We proposed that it could also be used to determine the coreactant level of a react...Infrared spectrum is a general quantitation method which can be used to determine the concentration of a certain component in mixture.We proposed that it could also be used to determine the coreactant level of a reactive system.A two-part polyurethane film was used as a model system.The results showed that the height ratio of ring mode signal in urea and C—O signal in polyester polyol can be used to calculate the ratio of the two reactants.The assignments of the peaks were studied by in-situ reaction monitoring with moisture level changes and deuteration methods.The applicable conditions of this calibration curves were also discussed.展开更多
基金the financial support from the National Natural Science Foundation of China (No. 22022406)the Natural Science Foundation of Tianjin (Nos. 20JCJQJC00110 and 20JCYBJC00590)+1 种基金the 111 project (No. B12015)the Haihe Laboratory of Sustainable Chemical Transformations。
文摘Surface-enhanced Raman spectroscopy(SERS), a powerful surface vibrational spectroscopic technique, is ideally suited for in situ monitoring the chemical transformations occurred at surfaces and/or interfaces.For in situ SERS monitoring, a platform integrated both plasmonic and catalytic activity is a prerequisite. Here, we fabricate a bifunctional Au-Pd nanocoronal film for in situ SERS monitoring Suzuki-Miyaura cross-coupling reaction. This excellent bifunctional substrate leads to the coupling of high catalytic activity with a strong SERS effect at the center of two adjacent Au cores and shows fine reproducibility and stability of SERS signals. During investigating the Suzuki reaction with in situ SERS, we found two distinct catalytic kinetic processes resulted from two disparate catalytic sites on a Au-Pd nanocoronal. Comparing with conventional analytical techniques, this work provides a novel approach for studying Suzuki reactions at surfaces and/or interfaces with in situ SERS.
文摘Infrared spectrum is a general quantitation method which can be used to determine the concentration of a certain component in mixture.We proposed that it could also be used to determine the coreactant level of a reactive system.A two-part polyurethane film was used as a model system.The results showed that the height ratio of ring mode signal in urea and C—O signal in polyester polyol can be used to calculate the ratio of the two reactants.The assignments of the peaks were studied by in-situ reaction monitoring with moisture level changes and deuteration methods.The applicable conditions of this calibration curves were also discussed.