The advanced missile uses blended control of nero-fin and reaction-jet to improve missile maneuverability. The blended control design, which is multi-inputs and multi-outputs (MIMO), severe nonlinear, and model unce...The advanced missile uses blended control of nero-fin and reaction-jet to improve missile maneuverability. The blended control design, which is multi-inputs and multi-outputs (MIMO), severe nonlinear, and model uncertain, is much more complex than conventional nero-fin control. A novel nonlinear backstepping control approach is proposed to design the blended autopilot. Missile model is reformed to a new one by state reconstruction technique so that it is easy to be handled by the backstepping method. Then a Lyapunov function is chosen to avoid oscillation caused in normal backstepping way when control parameters are mismatched. In distribution of both inputs, optimal energy logic is proposed. In addition, a fuzzy cerebellar model articulation controller (FCMAC) neural network is used to guarantee controller robustness to uncertainties. Finally, simulation results demonstrate the efficiency and advantages of the proposed method.展开更多
Water jet thruster, which is a marine system that creates a jet of water for propulsion, has several advantages such as low noise, good anti-cavitation characteristics and maneuvering characteristics. The reaction thr...Water jet thruster, which is a marine system that creates a jet of water for propulsion, has several advantages such as low noise, good anti-cavitation characteristics and maneuvering characteristics. The reaction thrust characteristics of water jet for conical nozzles directly determine the speed of autonomous underwater vehicles (AUV). Theoretical, numerical and experimental studies have been, carried out to investigate the effects of the nozzle geometries as well as inlet conditions on the reaction thrust of water jet in this paper. The experimental results show that: 1) the reaction thrust is proportional to inlet pressure, the square of flow rate and 2/3 power exponent of input power; 2) the diameter of cylinder column for conical nozzle has great influence on the reaction thrust characteristics; 3) the best values of the half cone angle and the cylinder column length exist to make the reaction thrust coefficient to reach the maximum under the same inlet conditions. Those provide a basis for nozzles design and have significant value, especially for developing high performance and efficiency water jet propulsion unit.展开更多
Clear knowledge on the reaction thrust of water jet is valuable for better design of water jet propulsion system. In this paper, theoretical, numerical and experimental studies were carried out to investigate the effe...Clear knowledge on the reaction thrust of water jet is valuable for better design of water jet propulsion system. In this paper, theoretical, numerical and experimental studies were carried out to investigate the effects of the nozzle geometry as-well as the inlet conditions on the reaction thrust of water jet. Comparison analyses reveal that the reaction thrust has a direct proportional relationship with the product of the inlet pressure, the square of flow rate and two-thirds power exponent of the input power. The results also indicate that the diameter of the cylinder column for the conical nozzle has great influence on the reaction thrust characteristics. In addition, the best values of the half cone angle and the cylinder column length exist to make the reaction thrust reach its maximum under the same inlet conditions.展开更多
Reaction crystallization of struvite in water solutions containing 0.20 mass % of phosphate(V) ions by magnesium and ammonium ions addition was investigated experimentally. Process was carried out in DTM type crystall...Reaction crystallization of struvite in water solutions containing 0.20 mass % of phosphate(V) ions by magnesium and ammonium ions addition was investigated experimentally. Process was carried out in DTM type crystallizer with liquid jet pump device in 298 K assuming stoichiometric conditions. Struvite crystals of mean size Lm 5.2-23.0 μm were produced depending on pH (9-11) and mean residence time of suspension in a crystallizer τ (900-3600 s). Under these conditions linear growth rate of struvite crystals (SIG MSMPR kinetic model) decreased 2-time with the increase in pH and 3-time with the elongation of mean residence time of crystal suspension from 7.11×10-9 m/s (pH 9, τ900 s) to 1.65×10-9 m/s (pH 11, τ3600 s). Nucleation rate varied within the 7.9×108-1.8×1010 1/(sm3) limits. Struvite product of maximal linear size exceeded 100 μm with 10 vol. % of < 3 μm fraction corresponded to pH 9 and τ3600 s.展开更多
介绍了某炼油厂利用15万t·a^(-1)柴油加氢精制装置试生产3^(#)喷气燃料的具体实施过程,通过对原料油馏程、操作参数的调整,采取降低反应温度、反应压力及分馏塔温度等一系列措施,以常减压装置常一线油为原料,成功生产出3^(#)喷气...介绍了某炼油厂利用15万t·a^(-1)柴油加氢精制装置试生产3^(#)喷气燃料的具体实施过程,通过对原料油馏程、操作参数的调整,采取降低反应温度、反应压力及分馏塔温度等一系列措施,以常减压装置常一线油为原料,成功生产出3^(#)喷气燃料。实践发现,140~255℃常一线馏分是生产3^(#)喷气燃料的适宜原料,操作参数相较于生产柴油时偏低,将反应压力从3500 k Pa降低至3200 k Pa,3^(#)喷气燃料的芳烃体积分数由7.33%上升至9.27%,满足大于体积分数8.50%的内控指标要求。3^(#)喷气燃料试生产的成功,证明柴油加氢精制装置具备在线切换生产柴油和3^(#)喷气燃料产品的能力,有效提升装置的经济效益和社会效益,对柴油加氢精制装置的产品转型提供了良好的工业范例。展开更多
Removal of brittle materials in the brittle or ductile mode inevitably causes damaged or strained surface layers containing cracks, scratches or dislocations. Within elastic deformation, the arrangement of each atom c...Removal of brittle materials in the brittle or ductile mode inevitably causes damaged or strained surface layers containing cracks, scratches or dislocations. Within elastic deformation, the arrangement of each atom can be recovered back to its original position without any defects introduced. Based on surface hydroxylation and chemisorption theory, material removal mechanism of quartz glass in the elastic mode is analyzed to obtain defect-free surface. Elastic contact condition between nanoparticle and quartz glass surface is confirmed from the Hertz contact theory model. Atoms on the quartz glass surface are removed by chemical bond generated by impact reaction in the elastic mode, so no defects are generated without mechanical process. Experiment was conducted on a numerically controlled system for nanoparticle jet polishing, and one flat quartz glass was polished in the elastic mode. Results show that scratches on the sample surface are completely removed away with no mechanical defects introduced, and microroughness(Ra) is decreased from 1.23 nm to 0.47 nm. Functional group Ce — O — Si on ceria nanoparticles after polishing was detected directly and indirectly by FTIR, XRD and XPS spectra analysis from which the chemical impact reaction is validated.展开更多
The research results of processes proceeding in supersonic jets of light hydrocarbons, activated by an electron beam are presented. It is shown, that condensation suppressed at activation by electrons in the initial s...The research results of processes proceeding in supersonic jets of light hydrocarbons, activated by an electron beam are presented. It is shown, that condensation suppressed at activation by electrons in the initial stage of condensation. The developed condensation conditions mode leads to increasing of a part of heavy corpuscles in activated stream and not only owing to stimulation of condensation but because of formation of heavy hydrocarbonic molecules.展开更多
基金the China Aviation Science Foundation (03D12004)
文摘The advanced missile uses blended control of nero-fin and reaction-jet to improve missile maneuverability. The blended control design, which is multi-inputs and multi-outputs (MIMO), severe nonlinear, and model uncertain, is much more complex than conventional nero-fin control. A novel nonlinear backstepping control approach is proposed to design the blended autopilot. Missile model is reformed to a new one by state reconstruction technique so that it is easy to be handled by the backstepping method. Then a Lyapunov function is chosen to avoid oscillation caused in normal backstepping way when control parameters are mismatched. In distribution of both inputs, optimal energy logic is proposed. In addition, a fuzzy cerebellar model articulation controller (FCMAC) neural network is used to guarantee controller robustness to uncertainties. Finally, simulation results demonstrate the efficiency and advantages of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant No.50775081)the National High Technology Research and Development Program of China(863 Program,Grant No.2006AA09Z238)
文摘Water jet thruster, which is a marine system that creates a jet of water for propulsion, has several advantages such as low noise, good anti-cavitation characteristics and maneuvering characteristics. The reaction thrust characteristics of water jet for conical nozzles directly determine the speed of autonomous underwater vehicles (AUV). Theoretical, numerical and experimental studies have been, carried out to investigate the effects of the nozzle geometries as well as inlet conditions on the reaction thrust of water jet in this paper. The experimental results show that: 1) the reaction thrust is proportional to inlet pressure, the square of flow rate and 2/3 power exponent of input power; 2) the diameter of cylinder column for conical nozzle has great influence on the reaction thrust characteristics; 3) the best values of the half cone angle and the cylinder column length exist to make the reaction thrust coefficient to reach the maximum under the same inlet conditions. Those provide a basis for nozzles design and have significant value, especially for developing high performance and efficiency water jet propulsion unit.
基金supported by the National Natural Science Foundation of China (Grant No.50375056)the National High-Technology Research and Development Program of China (Grant No.2006AA09Z238)
文摘Clear knowledge on the reaction thrust of water jet is valuable for better design of water jet propulsion system. In this paper, theoretical, numerical and experimental studies were carried out to investigate the effects of the nozzle geometry as-well as the inlet conditions on the reaction thrust of water jet. Comparison analyses reveal that the reaction thrust has a direct proportional relationship with the product of the inlet pressure, the square of flow rate and two-thirds power exponent of the input power. The results also indicate that the diameter of the cylinder column for the conical nozzle has great influence on the reaction thrust characteristics. In addition, the best values of the half cone angle and the cylinder column length exist to make the reaction thrust reach its maximum under the same inlet conditions.
文摘Reaction crystallization of struvite in water solutions containing 0.20 mass % of phosphate(V) ions by magnesium and ammonium ions addition was investigated experimentally. Process was carried out in DTM type crystallizer with liquid jet pump device in 298 K assuming stoichiometric conditions. Struvite crystals of mean size Lm 5.2-23.0 μm were produced depending on pH (9-11) and mean residence time of suspension in a crystallizer τ (900-3600 s). Under these conditions linear growth rate of struvite crystals (SIG MSMPR kinetic model) decreased 2-time with the increase in pH and 3-time with the elongation of mean residence time of crystal suspension from 7.11×10-9 m/s (pH 9, τ900 s) to 1.65×10-9 m/s (pH 11, τ3600 s). Nucleation rate varied within the 7.9×108-1.8×1010 1/(sm3) limits. Struvite product of maximal linear size exceeded 100 μm with 10 vol. % of < 3 μm fraction corresponded to pH 9 and τ3600 s.
文摘介绍了某炼油厂利用15万t·a^(-1)柴油加氢精制装置试生产3^(#)喷气燃料的具体实施过程,通过对原料油馏程、操作参数的调整,采取降低反应温度、反应压力及分馏塔温度等一系列措施,以常减压装置常一线油为原料,成功生产出3^(#)喷气燃料。实践发现,140~255℃常一线馏分是生产3^(#)喷气燃料的适宜原料,操作参数相较于生产柴油时偏低,将反应压力从3500 k Pa降低至3200 k Pa,3^(#)喷气燃料的芳烃体积分数由7.33%上升至9.27%,满足大于体积分数8.50%的内控指标要求。3^(#)喷气燃料试生产的成功,证明柴油加氢精制装置具备在线切换生产柴油和3^(#)喷气燃料产品的能力,有效提升装置的经济效益和社会效益,对柴油加氢精制装置的产品转型提供了良好的工业范例。
基金Projects(51305450,51275521)supported by the National Natural Science Foundation of China
文摘Removal of brittle materials in the brittle or ductile mode inevitably causes damaged or strained surface layers containing cracks, scratches or dislocations. Within elastic deformation, the arrangement of each atom can be recovered back to its original position without any defects introduced. Based on surface hydroxylation and chemisorption theory, material removal mechanism of quartz glass in the elastic mode is analyzed to obtain defect-free surface. Elastic contact condition between nanoparticle and quartz glass surface is confirmed from the Hertz contact theory model. Atoms on the quartz glass surface are removed by chemical bond generated by impact reaction in the elastic mode, so no defects are generated without mechanical process. Experiment was conducted on a numerically controlled system for nanoparticle jet polishing, and one flat quartz glass was polished in the elastic mode. Results show that scratches on the sample surface are completely removed away with no mechanical defects introduced, and microroughness(Ra) is decreased from 1.23 nm to 0.47 nm. Functional group Ce — O — Si on ceria nanoparticles after polishing was detected directly and indirectly by FTIR, XRD and XPS spectra analysis from which the chemical impact reaction is validated.
文摘The research results of processes proceeding in supersonic jets of light hydrocarbons, activated by an electron beam are presented. It is shown, that condensation suppressed at activation by electrons in the initial stage of condensation. The developed condensation conditions mode leads to increasing of a part of heavy corpuscles in activated stream and not only owing to stimulation of condensation but because of formation of heavy hydrocarbonic molecules.