With in situ IR, two different CO adsorption bands were detected on various chemical state gold catalysts. One band is attributed to the linear CO on an oxidized gold catalyst(2100 cm -1 ), the other one is as...With in situ IR, two different CO adsorption bands were detected on various chemical state gold catalysts. One band is attributed to the linear CO on an oxidized gold catalyst(2100 cm -1 ), the other one is ascribed to the bridged CO on metallic gold (2085 cm -1 ). CO pulse reaction showed that Au/Fe 2O 3 catalyst had a room temperature activity even in the presence of moisture. The produced CO 2 was detained and more easily desorbed from supported gold catalyst than support oxide. TPD IDT results indicated that the O - 2 superoxide ions are the possible active oxygen species.展开更多
Selective oxidation of propane by lattice oxygen of vanadium-phosphorus oxide(VPO) catalysts was investigated with a pulse reactor in which the oxidation of propane and there-oxidation of catalyst were implemented alt...Selective oxidation of propane by lattice oxygen of vanadium-phosphorus oxide(VPO) catalysts was investigated with a pulse reactor in which the oxidation of propane and there-oxidation of catalyst were implemented alternately in the presence of water vapor. The principalproducts are acrylic acid (AA), acetic acid (HAc), and carbon oxides. In addition, small amounts ofC_1 and C_2 hydrocarbons were also found, molar ratio of AA to HAc is 1.4-2.2. The active oxygenspecies are those adsorbed on catalyst surface firmly and/or bound to catalyst lattice, i.e. latticeoxygen; the selective oxidation of propane on VPO catalysts can be carried out in a circulatingfluidized bed (CFB) riser reactor. For propane oxidation over VPO catalysts, the effects of reactiontemperature in a pulse reactor were found almost the same as in a steady-state flow reactor. Thatis, as the reaction temperature increases, propane conversion and the amount of C_1+C_2 hydrocarbonsin the product increase steadily, while selectivity to acrylic acid and to acetic acid increaseprior to 350℃ then begin to drop at temperatures higher than 350℃, and yields of acrylic acid andof acetic acid attained maximum at about 400℃. The maximum yields of acrylic acid and of aceticacid for a single-pass are 7.50% and 4.59% respectively, with 38.2% propane conversion. When theamount of propane pulsed decreases or the amount of catalyst loaded increases, the conversionincreases but the selectivity decreases. Increasing the flow rate of carrier gases causes theconversion pass through a minimum but selectivity and yields pass through a maximum. In a fixed bedreactor, it is hard to obtain high selectivity at a high reaction conversion due to the furtherdegradation of acrylic acid and acetic acid even though propane was oxidized by the lattice oxygen.The catalytic performance can be improved in the presence of excess propane. Propylene can beoxidized by lattice oxygen of VPO catalyst at 250℃, nevertheless, selectivity to AA and to HAc areeven lower, much more acetic acid was produced (molar ratio of AA to HAc is 0.19:1-0.83:1) thoughthe oxidation products are the same as from propane.展开更多
文摘With in situ IR, two different CO adsorption bands were detected on various chemical state gold catalysts. One band is attributed to the linear CO on an oxidized gold catalyst(2100 cm -1 ), the other one is ascribed to the bridged CO on metallic gold (2085 cm -1 ). CO pulse reaction showed that Au/Fe 2O 3 catalyst had a room temperature activity even in the presence of moisture. The produced CO 2 was detained and more easily desorbed from supported gold catalyst than support oxide. TPD IDT results indicated that the O - 2 superoxide ions are the possible active oxygen species.
基金The work is supported by The Department of Education of Heilongjiang Province.
文摘Selective oxidation of propane by lattice oxygen of vanadium-phosphorus oxide(VPO) catalysts was investigated with a pulse reactor in which the oxidation of propane and there-oxidation of catalyst were implemented alternately in the presence of water vapor. The principalproducts are acrylic acid (AA), acetic acid (HAc), and carbon oxides. In addition, small amounts ofC_1 and C_2 hydrocarbons were also found, molar ratio of AA to HAc is 1.4-2.2. The active oxygenspecies are those adsorbed on catalyst surface firmly and/or bound to catalyst lattice, i.e. latticeoxygen; the selective oxidation of propane on VPO catalysts can be carried out in a circulatingfluidized bed (CFB) riser reactor. For propane oxidation over VPO catalysts, the effects of reactiontemperature in a pulse reactor were found almost the same as in a steady-state flow reactor. Thatis, as the reaction temperature increases, propane conversion and the amount of C_1+C_2 hydrocarbonsin the product increase steadily, while selectivity to acrylic acid and to acetic acid increaseprior to 350℃ then begin to drop at temperatures higher than 350℃, and yields of acrylic acid andof acetic acid attained maximum at about 400℃. The maximum yields of acrylic acid and of aceticacid for a single-pass are 7.50% and 4.59% respectively, with 38.2% propane conversion. When theamount of propane pulsed decreases or the amount of catalyst loaded increases, the conversionincreases but the selectivity decreases. Increasing the flow rate of carrier gases causes theconversion pass through a minimum but selectivity and yields pass through a maximum. In a fixed bedreactor, it is hard to obtain high selectivity at a high reaction conversion due to the furtherdegradation of acrylic acid and acetic acid even though propane was oxidized by the lattice oxygen.The catalytic performance can be improved in the presence of excess propane. Propylene can beoxidized by lattice oxygen of VPO catalyst at 250℃, nevertheless, selectivity to AA and to HAc areeven lower, much more acetic acid was produced (molar ratio of AA to HAc is 0.19:1-0.83:1) thoughthe oxidation products are the same as from propane.