Different mathematical models for ethylene furnace reactor tubes were reviewed. On the basis of these models a new mathematical simulation approach for reactor tubes based on computational fluid dynamics (CFD) techn...Different mathematical models for ethylene furnace reactor tubes were reviewed. On the basis of these models a new mathematical simulation approach for reactor tubes based on computational fluid dynamics (CFD) technique was presented. This approach took the flow, heat transfer, mass transfer and thermal cracking reactions in the reactor tubes into consideration. The coupled reactor model was solved with the SIMPLE algorithm. Some detailed information about the flow field, temperature field and concentration distribution in the reactor tubes was obtained, revealing the basic characteristics of the hydrodynamic phenomena and reaction behavior in the reactor tubes. The CFD approach provides the necessary information for conclusive decisions regarding the production optimization, the design and improvement of reactor tubes, and the new techniques implementation.展开更多
Neural tube development comprises neural induction, neural epithelial cell proliferation, and apoptosis, as well as migration of nerve cells. Too much or too little apoptosis leads to abnormal nervous system developme...Neural tube development comprises neural induction, neural epithelial cell proliferation, and apoptosis, as well as migration of nerve cells. Too much or too little apoptosis leads to abnormal nervous system development. The present study analyzed expression and distribution of apoptotic-related factors, including Fas, FasL, and caspase-3, during human embryonic neural tube development. Experimental results showed that increased caspase-3 expression promoted neural apoptosis via a mitochondrial-mediated intrinsic pathway at 4 weeks during early human embryonic neural tube development. Subsequently, Fas and FasL expression increased during embryonic development. The results suggest that neural cells influence neural apoptosis through synergistic effects of extrinsic pathways. Therefore, neural apoptosis during the early period of neural tube development in the human embryo might be regulated by the death receptor induced apoptotic extrinsic pathways.展开更多
文摘Different mathematical models for ethylene furnace reactor tubes were reviewed. On the basis of these models a new mathematical simulation approach for reactor tubes based on computational fluid dynamics (CFD) technique was presented. This approach took the flow, heat transfer, mass transfer and thermal cracking reactions in the reactor tubes into consideration. The coupled reactor model was solved with the SIMPLE algorithm. Some detailed information about the flow field, temperature field and concentration distribution in the reactor tubes was obtained, revealing the basic characteristics of the hydrodynamic phenomena and reaction behavior in the reactor tubes. The CFD approach provides the necessary information for conclusive decisions regarding the production optimization, the design and improvement of reactor tubes, and the new techniques implementation.
文摘Neural tube development comprises neural induction, neural epithelial cell proliferation, and apoptosis, as well as migration of nerve cells. Too much or too little apoptosis leads to abnormal nervous system development. The present study analyzed expression and distribution of apoptotic-related factors, including Fas, FasL, and caspase-3, during human embryonic neural tube development. Experimental results showed that increased caspase-3 expression promoted neural apoptosis via a mitochondrial-mediated intrinsic pathway at 4 weeks during early human embryonic neural tube development. Subsequently, Fas and FasL expression increased during embryonic development. The results suggest that neural cells influence neural apoptosis through synergistic effects of extrinsic pathways. Therefore, neural apoptosis during the early period of neural tube development in the human embryo might be regulated by the death receptor induced apoptotic extrinsic pathways.