<span style="font-family:Verdana;">In this study, two Cu</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-fami...<span style="font-family:Verdana;">In this study, two Cu</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">based catalysts with and without N doped carbon matrix, named N-Cu/CuO/C and Cu/CuO were synthesized via calcination of melamine-cupper acetate complex and cupper acetate at 500<span style="white-space:nowrap;">°</span>C under an inert atmosphere. The catalysts were characterized by X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), and </span><span><span style="font-family:Verdana;">CHNS </span><span><span style="font-family:Verdana;">elemental analyzer</span><i><span style="font-family:Verdana;">.</span></i></span></span><span style="font-family:Verdana;"> The catalytic activity of both catalysts was evaluated</span><span style="font-family:Verdana;"> through the NaBH</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> associated reduction of commercial textile dye named reactive black 5 (RB5). The kinetics of the reduction of reactive black 5 was also described by the pseudo-first-order kinetic equation. For the studied reduction, N-Cu/CuO/C exhibited enhanced catalytic activity both in conversion and kinetics (97% conv. in 315 sec) compared to that of by Cu/CuO/C (25% conv. in 1500 sec). Besides, N-Cu/CuO/C also demonstrated good reusability up to four consecutive cycles.</span></span></span></span>展开更多
Cyclic voltammograms of reactive black5 (RB5) at different pHs in the range 1.0 - 13.0 on multiwall carbon nanotube modified glassy carbon electrode revealed the presence of one well-defined irreversible anodic peak a...Cyclic voltammograms of reactive black5 (RB5) at different pHs in the range 1.0 - 13.0 on multiwall carbon nanotube modified glassy carbon electrode revealed the presence of one well-defined irreversible anodic peak around 975 mV in acidic and neutral pHs. Adsorption controlled oxidation observed at acidic pH 1.0 resulted in the maximum peak current response in cyclic voltammograms. A systematic differential pulse stripping voltammetric studies were carried out using the modified electrode at pH 1.0. The accumulation parameters, accumulation potential and time were optimized for maximum adsorption of the dye which was ascertained from the SEM photographs and XRD results. The stripping parameters were optimized and calibration was made under optimum conditions. The range of study was from 0.5 ppm to 100 ppm and the lower limit of determination was 100 ppm. Five identical experiments were carried out and the RSD value obtained was 2.5% suggesting good reproducibility. The proposed method was successfully applied to determine the concentration of dye in the fabric and wastewater after dyeing.展开更多
A strain of photosynthetic bacterium, Rhodopseudomonas palustris W1, isolated from a lab-scale anaerobic moving bed biofilm reactor (MBBR) treating textile e?uent was demonstrated to decolorize Reactive Black 5 (RB5) ...A strain of photosynthetic bacterium, Rhodopseudomonas palustris W1, isolated from a lab-scale anaerobic moving bed biofilm reactor (MBBR) treating textile e?uent was demonstrated to decolorize Reactive Black 5 (RB5) effciently under anaerobic condition. By a series of batch tests, the suitable conditions for RB5 decolorization were obtained, namely, pH < 10, light presence, glutamine or lactate as carbon source with concentration more than 500 mg/L when lactate is selected, NH4Cl as a nitrogen source wi...展开更多
The cometabolic roles of glucose were investigated in decolorization of an azo dye, Reactive Black 5, by yeast isolates, Debaryomyces polymorphus and Candida tropicalis. The results indicated that the dye degradation ...The cometabolic roles of glucose were investigated in decolorization of an azo dye, Reactive Black 5, by yeast isolates, Debaryomyces polymorphus and Candida tropicalis. The results indicated that the dye degradation by the two yeasts was highly associated with the yeast growth process and glucose presence in the medium. Color removal of 200 mg dye/L was increased from 76.4% to 92.7% within 60 h to 100% within 18-24 h with the increase of glucose from 5 to 10 g/L, although the activity of manganese dependent peroxidase (MnP) decreased by 2-8 times in this case. Hydrogen peroxide of 233.3 μg/L was detected in 6 h in D. polymorphus culture. The cometabolic functions of glucose and hydrogen peroxide could be also confirmed by the further color removals of 95.8% or 78,9% in the second cycle of decolorization tests in which 7 g glucose/L or 250 μg H202/L was superadded respectively together with 200 mg dye/L.展开更多
Photocatalytic discoloration kinetics of Reactive Black 5 (RB5), a vinylsulfone dye, has been studied spectrophotometrically by following the decrease in dye concentration with time at ambient conditions using a flow ...Photocatalytic discoloration kinetics of Reactive Black 5 (RB5), a vinylsulfone dye, has been studied spectrophotometrically by following the decrease in dye concentration with time at ambient conditions using a flow loop reactor. UV lump, Black Light Blue (BLB) emitting at maximum wavelength of 365 nm and Ahlstrom Research Service paper consistent of TiO2 P500 coated on non woven paper was used respectively as source of UV light and photocatalyst. At natural pH, the result shows that photolysis of RB5 and its adsorption in the presence of photocatalyst was negligible while the photocatalytic oxidation (PCO) permits 30.8% of RB5 degradation. The degradation of dye was studied under a variety of conditions such as volumetric flow rate, initial pH, photocatalyst reuse, and in the presence of electron acceptor such as sodium persulphate ((Na)2S2O8). The degradation rates were found to be strongly influenced by all the above parameters. The circulation flow rate of 108 L/h was the best. The rate constant calculated when the initial pH was varied shows that pH 3 was more favorable for RB5 removal. Peroxydisulphate ions have the strong effect on RB5 discoloration even in dark without and with photocatalyst. When UV light was used in the presence of photocatalyst, 50 min was enough for quasi-total removal of RB5 with (0.2 M).展开更多
Saccharomyces cerevisiae (baker’s yeast) is the most important industrial microorganisms. This yeast is commonly used as a leavening agent in baking bread and bakery products, where it produces carbon dioxide from co...Saccharomyces cerevisiae (baker’s yeast) is the most important industrial microorganisms. This yeast is commonly used as a leavening agent in baking bread and bakery products, where it produces carbon dioxide from converting of the fermentable sugars present in the dough. Nowadays, industrial and chemical activities led to produce new compounds with new kinds of contamination in the environment. Discharge of untreated or partially treated industrial sewage has created the contamination problems of rivers and lakes such as drugs, oil, heavy metals, paints, pesticides and various chemical compounds in them. Hence, it is necessary to control and reduce the levels of these compounds in wastewater and bring them to permissible values. This study aims to study the bioconversion potential of commonly available Saccharomyces cerevisiae for the two textile dyes of Carmoisine and Reactive Black 5. Reaction mixtures for biotransformation of dyes included 50 mg/l Carmoisine or 25 mg/l Reactive Black 5 and 1% dried harvested cells of S. cerevisiae (bread’s yeast) were tested. Harvested dry and wet yeast were studied for this purpose. The results show that harvested cells of Saccharomyces cerevisiae are able to bioconvert Carmoisine and Reactive Black 5. Reactive Black 5, Carmoisine are degraded by biotransformation 85% and 53% within 24 hours in water at the room temperature.展开更多
Anthraquinone dyes are a class of typical carcinogenic and hard-biodegradable organic pollutants.This study aimed to enhance the decolorization of anthraquinone dye by rationally designing an expected immobilized syst...Anthraquinone dyes are a class of typical carcinogenic and hard-biodegradable organic pollutants.This study aimed to enhance the decolorization of anthraquinone dye by rationally designing an expected immobilized system.Reactive blue 4(RB4) was used as a substrate model and a previous isolated dyedegrading strain Aspergillus flavus A5pl was purposefully immobilized.Considering the effects of cell attachment and mass transfer,the polyurethane foam(PUF) with open pore structure was selected as the immobilization carrier.Results showed that the RB4 decolorization efficiency was significant enhanced after immobilization.Compared to the free mycelium system,the decolorization time of200 mg·L^(-1)RB4 was shortened from 48 h to 28 h by the PUF-immobilized cell system.Moreover,the PUF-immobilized system could tolerate RB4 up to 2000 mg-L^(-1).In the packed bed bioreactor(PBBR),an average decolorization efficiency of 93.3% could be maintained by the PUF-immobilized system for26 days.The decolorization process of RB4 was well described by the logistic equation and the degradation pathway was discussed.It was found that the higher specific growth rate of the PUF-immobilized cells was one of reasons for the enhanced decolorization.The good performance of the PUFimmobilized cell system would make it have potential application value for RB4 bioremediation.展开更多
文摘<span style="font-family:Verdana;">In this study, two Cu</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">based catalysts with and without N doped carbon matrix, named N-Cu/CuO/C and Cu/CuO were synthesized via calcination of melamine-cupper acetate complex and cupper acetate at 500<span style="white-space:nowrap;">°</span>C under an inert atmosphere. The catalysts were characterized by X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), and </span><span><span style="font-family:Verdana;">CHNS </span><span><span style="font-family:Verdana;">elemental analyzer</span><i><span style="font-family:Verdana;">.</span></i></span></span><span style="font-family:Verdana;"> The catalytic activity of both catalysts was evaluated</span><span style="font-family:Verdana;"> through the NaBH</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> associated reduction of commercial textile dye named reactive black 5 (RB5). The kinetics of the reduction of reactive black 5 was also described by the pseudo-first-order kinetic equation. For the studied reduction, N-Cu/CuO/C exhibited enhanced catalytic activity both in conversion and kinetics (97% conv. in 315 sec) compared to that of by Cu/CuO/C (25% conv. in 1500 sec). Besides, N-Cu/CuO/C also demonstrated good reusability up to four consecutive cycles.</span></span></span></span>
文摘Cyclic voltammograms of reactive black5 (RB5) at different pHs in the range 1.0 - 13.0 on multiwall carbon nanotube modified glassy carbon electrode revealed the presence of one well-defined irreversible anodic peak around 975 mV in acidic and neutral pHs. Adsorption controlled oxidation observed at acidic pH 1.0 resulted in the maximum peak current response in cyclic voltammograms. A systematic differential pulse stripping voltammetric studies were carried out using the modified electrode at pH 1.0. The accumulation parameters, accumulation potential and time were optimized for maximum adsorption of the dye which was ascertained from the SEM photographs and XRD results. The stripping parameters were optimized and calibration was made under optimum conditions. The range of study was from 0.5 ppm to 100 ppm and the lower limit of determination was 100 ppm. Five identical experiments were carried out and the RSD value obtained was 2.5% suggesting good reproducibility. The proposed method was successfully applied to determine the concentration of dye in the fabric and wastewater after dyeing.
基金the Hi-Tech Research and Development Program (863) of China (No.2007AA06Z300)
文摘A strain of photosynthetic bacterium, Rhodopseudomonas palustris W1, isolated from a lab-scale anaerobic moving bed biofilm reactor (MBBR) treating textile e?uent was demonstrated to decolorize Reactive Black 5 (RB5) effciently under anaerobic condition. By a series of batch tests, the suitable conditions for RB5 decolorization were obtained, namely, pH < 10, light presence, glutamine or lactate as carbon source with concentration more than 500 mg/L when lactate is selected, NH4Cl as a nitrogen source wi...
基金This work was supported by the Program for New Century Excellent Talents in University in China(No.NCET-05-0612)the National Natural Science Foundation of China(No.20677014).
文摘The cometabolic roles of glucose were investigated in decolorization of an azo dye, Reactive Black 5, by yeast isolates, Debaryomyces polymorphus and Candida tropicalis. The results indicated that the dye degradation by the two yeasts was highly associated with the yeast growth process and glucose presence in the medium. Color removal of 200 mg dye/L was increased from 76.4% to 92.7% within 60 h to 100% within 18-24 h with the increase of glucose from 5 to 10 g/L, although the activity of manganese dependent peroxidase (MnP) decreased by 2-8 times in this case. Hydrogen peroxide of 233.3 μg/L was detected in 6 h in D. polymorphus culture. The cometabolic functions of glucose and hydrogen peroxide could be also confirmed by the further color removals of 95.8% or 78,9% in the second cycle of decolorization tests in which 7 g glucose/L or 250 μg H202/L was superadded respectively together with 200 mg dye/L.
文摘Photocatalytic discoloration kinetics of Reactive Black 5 (RB5), a vinylsulfone dye, has been studied spectrophotometrically by following the decrease in dye concentration with time at ambient conditions using a flow loop reactor. UV lump, Black Light Blue (BLB) emitting at maximum wavelength of 365 nm and Ahlstrom Research Service paper consistent of TiO2 P500 coated on non woven paper was used respectively as source of UV light and photocatalyst. At natural pH, the result shows that photolysis of RB5 and its adsorption in the presence of photocatalyst was negligible while the photocatalytic oxidation (PCO) permits 30.8% of RB5 degradation. The degradation of dye was studied under a variety of conditions such as volumetric flow rate, initial pH, photocatalyst reuse, and in the presence of electron acceptor such as sodium persulphate ((Na)2S2O8). The degradation rates were found to be strongly influenced by all the above parameters. The circulation flow rate of 108 L/h was the best. The rate constant calculated when the initial pH was varied shows that pH 3 was more favorable for RB5 removal. Peroxydisulphate ions have the strong effect on RB5 discoloration even in dark without and with photocatalyst. When UV light was used in the presence of photocatalyst, 50 min was enough for quasi-total removal of RB5 with (0.2 M).
文摘Saccharomyces cerevisiae (baker’s yeast) is the most important industrial microorganisms. This yeast is commonly used as a leavening agent in baking bread and bakery products, where it produces carbon dioxide from converting of the fermentable sugars present in the dough. Nowadays, industrial and chemical activities led to produce new compounds with new kinds of contamination in the environment. Discharge of untreated or partially treated industrial sewage has created the contamination problems of rivers and lakes such as drugs, oil, heavy metals, paints, pesticides and various chemical compounds in them. Hence, it is necessary to control and reduce the levels of these compounds in wastewater and bring them to permissible values. This study aims to study the bioconversion potential of commonly available Saccharomyces cerevisiae for the two textile dyes of Carmoisine and Reactive Black 5. Reaction mixtures for biotransformation of dyes included 50 mg/l Carmoisine or 25 mg/l Reactive Black 5 and 1% dried harvested cells of S. cerevisiae (bread’s yeast) were tested. Harvested dry and wet yeast were studied for this purpose. The results show that harvested cells of Saccharomyces cerevisiae are able to bioconvert Carmoisine and Reactive Black 5. Reactive Black 5, Carmoisine are degraded by biotransformation 85% and 53% within 24 hours in water at the room temperature.
基金funded by the National Natural Science Foundation of China(21066001)the Scientific Research Foundation of Guangxi University(XJZ130360)the Innovation and Entrepreneurship Training Program for Undergraduate of Guangxi University(202010593174)。
文摘Anthraquinone dyes are a class of typical carcinogenic and hard-biodegradable organic pollutants.This study aimed to enhance the decolorization of anthraquinone dye by rationally designing an expected immobilized system.Reactive blue 4(RB4) was used as a substrate model and a previous isolated dyedegrading strain Aspergillus flavus A5pl was purposefully immobilized.Considering the effects of cell attachment and mass transfer,the polyurethane foam(PUF) with open pore structure was selected as the immobilization carrier.Results showed that the RB4 decolorization efficiency was significant enhanced after immobilization.Compared to the free mycelium system,the decolorization time of200 mg·L^(-1)RB4 was shortened from 48 h to 28 h by the PUF-immobilized cell system.Moreover,the PUF-immobilized system could tolerate RB4 up to 2000 mg-L^(-1).In the packed bed bioreactor(PBBR),an average decolorization efficiency of 93.3% could be maintained by the PUF-immobilized system for26 days.The decolorization process of RB4 was well described by the logistic equation and the degradation pathway was discussed.It was found that the higher specific growth rate of the PUF-immobilized cells was one of reasons for the enhanced decolorization.The good performance of the PUFimmobilized cell system would make it have potential application value for RB4 bioremediation.