期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Role of Crystal Seed in Aluminum Hydroxide Crystallization from Ammonia System with Added NH_(4)Al(SO_(4))_(2)·12H_(2)O
1
作者 王俊凯 李来时 +2 位作者 LIU Feng WANG Yuzheng 吴玉胜 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期945-953,共9页
A method to promote aluminum hydroxide crystal growth through pickling Al(OH)_(3)as seed in the ammonia system was proposed to overcome these defects.The experimental results show that,under the conditions of pickling... A method to promote aluminum hydroxide crystal growth through pickling Al(OH)_(3)as seed in the ammonia system was proposed to overcome these defects.The experimental results show that,under the conditions of pickling time of 15 min,the acid concentration of 10%,the addition of 70 g/L pickling-Al(OH)_(3)seed,and the coarse granular Al(OH)_(3)products(d0.5=85.667)can be obtained.The characterization results show that the phase of the product is gibbsite,consistent with the seed.Moreover,the steps and ledges can be formed on pickling Al(OH)_(3)seed surface under the ammonia system,effectively promoting crystal growth.During crystal growth,the roughness of the crystal surface was first increased and then decreased,and the lamellar structure was deposited on the crystal seed surface.The final particles are approximately round,the surface is compact and dense.The growth of the product is surface reaction controlled.In addition,the content of the AlO_(6)unit is increased and contributed to Al(OH)_(3)crystal growth. 展开更多
关键词 reactive crystallization coarse-grained Al(OH)_(3) crystal seed crystal growth process
下载PDF
Synergetic effect of secondary nucleation and growth on the lithium carbonate particle size in the gas-liquid reactive crystallization of LiCl-NH3·H2O-CO2 被引量:1
2
作者 Menghua Tian Jianwei Guo +2 位作者 Zhi Wang Jianwei Cao Xuzhong Gong 《Particuology》 SCIE EI CAS CSCD 2020年第4期10-17,共8页
In this study,the gas-liquid reactive crystallization of LiCl-NH3·H2O-CO2 was adopted to produce Li2CO3.The weakly alkaline nature of NH3·H2O in the absence of any recarbonation process resulted in a unimoda... In this study,the gas-liquid reactive crystallization of LiCl-NH3·H2O-CO2 was adopted to produce Li2CO3.The weakly alkaline nature of NH3·H2O in the absence of any recarbonation process resulted in a unimodal and easily controllable particle size distribution(PSD)of the obtained Li2CO3.The reaction temperature significantly influenced both the Li2CO3 particle size and PSD.By increasing the temperature from 25 to 60℃,the volume weighted mean particle size increased from 50.5 to 100.5μm,respectively.The Li2CO3 secondary nucleation rate and growth rate were obtained by focused beam reflectance measurements and a laser particle size analyzer,respectively.The secondary nucleation rate of Li2CO3 reduced as a function of temperature,whereas the growth rate increased.In addition to improving the surface energy of the crystals to enhance the growth process,higher temperatures also reduced the supersolubility of Li2CO3,which also plays a role to decrease the secondary nucleation rate.At a constant temperature,supersaturation affects the Li2CO3 particle size through the synergistic effect of secondary nucleation and growth.Hence,with improved supersaturation,the mean particle size of Li2CO3 decreased.The results provide a meaningful way to evaluate the crystallization process and to regulate the particle size. 展开更多
关键词 Li2CO3 Gas-liquid reactive crystallization Particle size distribution SUPERSATURATION Secondary nucleation Growth rate
原文传递
Control of the agglomeration of crystals in the reactive crystallization of 5-(difluoromethoxy)-2-mercapto-lH- benzimidazole
3
作者 Yongli WANG Shuyuan MA +1 位作者 Xiaodong LU Chuang XIE 《Frontiers of Chemical Science and Engineering》 CAS CSCD 2012年第4期423-431,共9页
5-(Difluoromethoxy)-2-mercapto- 1H-benzimi- dazole (DMB) was precipitated by adding acetic acid to the DMB sodium salt solution. The spherical agglomeration of DMB during the reactive crystallization in a batch cr... 5-(Difluoromethoxy)-2-mercapto- 1H-benzimi- dazole (DMB) was precipitated by adding acetic acid to the DMB sodium salt solution. The spherical agglomeration of DMB during the reactive crystallization in a batch crystallizer was monitored by real-time Particle Video Microscope (PVM). We found that the low feeding rate of acetic acid, high crystallization temperature, low agitation rate or adding seed crystal can facilitate the formation of spherical agglomerates. By using a simple model, the mean crystal agglomerate size of DMB thus predicted is generally in agreement with the experimental data. In addition, the crystallization process of DMB was optimized by a new control strategy of supersaturation to avoid disadvantages brought by agglomeration. 展开更多
关键词 5-(difluoromethoxy)-2-mercapto- 1H-benzi-midazole (DMB) reactive crystallization agglomeration feeding rate crystallization temperature agitation rate
原文传递
Advances in reactive co-precipitation technology for preparing high-performance cathodes
4
作者 Zhenzhen Wang Li Yang +4 位作者 Chunliu Xu Jingcai Cheng Junmei Zhao Qingshan Huang Chao Yang 《Green Carbon》 2023年第2期193-209,共17页
Reactive crystallization plays an essential role in the synthesis of high-quality precursors with a narrow particle size distribution,dense packing,and high sphericity.These features are beneficial in the fabrication ... Reactive crystallization plays an essential role in the synthesis of high-quality precursors with a narrow particle size distribution,dense packing,and high sphericity.These features are beneficial in the fabrication of high-specific-capacity and long-cycle-life cathodes for lithium-ion and sodium-ion batteries.However,in industrial production,designing and scaling-up crystallizers involves the use of semi-empirical approaches,making it challenging to satisfactorily meet techno-economic requirements.Furthermore,there is still a lack of in-depth knowledge on the theoretical models and technical calculations of the current co-precipitation process.This review elaborates on critical advances in the theoretical guidelines and process regulation strategies using a reactive crystallizer for the preparation of precursors by co-precipitation.The research progress on the kinetic models of co-precipitation reactive crystallization is presented.In addition,the regulation strategies for the reactive crystallization process of lithium-ion ternary cathodes are described in detail.These include the influence of different reactive crystallizer structures on the precursor's morphology and performance,the intelligent online measurement of efficient reactive crystallizers to ensure favorable conditions of co-precipitation,and preparing the precursor with a high tap density by increasing its solid holdup.A controllable reactive crystallization process is described in terms of the structural design with concentration gradient materials and bulk gradient doping of advantageous elements(such as magnesium ion)in lithium-ion cathodes and the fabrication of sodium-ion cathodes with three typical materials-Prussian blue analogues,transition metal oxides,and polyanionic phosphate compounds being involved. 展开更多
关键词 reactive crystallization Kinetic models CRYSTALLIZER Regulation strategy Cathode materials
原文传递
Reactivity of Fe3(CO)(12) with Alkynes R-C≡C-R': Syntheses and Crystal Structures of Substituted Cyclic Ketones and Carbonyl Iron Complexes
5
作者 索全伶 吴乐 +5 位作者 苏倩 竺宁 高媛媛 洪海龙 解瑞俊 韩利民 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2017年第4期696-704,共9页
The reactivity of carbonyl iron cluster with alkynes has been studied by the thermal reaction of Fe_3(CO)_(12) with R-C≡C-R'(R = Fc(Ferrocenyl); R′ = Ph(Phenyl), Fc, H). The hexacarbonyldiiron cluster wit... The reactivity of carbonyl iron cluster with alkynes has been studied by the thermal reaction of Fe_3(CO)_(12) with R-C≡C-R'(R = Fc(Ferrocenyl); R′ = Ph(Phenyl), Fc, H). The hexacarbonyldiiron cluster with ferracyclopentadiene ring(μ_2, η~4-C_4Ph_4)Fe_2(CO)_6(1) and one tetraphenyl substituted cyclopentadienone(Ph_4C_4CO)(2) were simultaneously obtained by the reaction of Fe_3(CO)_(12) with alkyne(Ph-C≡C-Ph). Only one ferrole cluster(μ_2, η~4-C_4Fc_2H_2)Fe_2(CO)_6(3) was separated by using Fc-C≡C-H as alkyne. One tri-carbonyl iron complex(η~4-C_4Fc_4CO)Fe(CO)_3(4) and an unexpected new cyclic ketone compound 2,2,4,5-tetraferrocenylcyclopenta-4-en-1,3-di-one [Fc_4C_3(CO)_2](5) were obtained by using Fc-C≡C-Fc as alkyne. A new complex(η4-2,4-diphenyl-3,5-diferrocenylcyclopenta-2,4-dien-1-one)-tricarbonyl iron(η~4-C_4Ph_2Fc_2CO)Fe(CO)_3(6) was synthesized by the reaction of Fe_3(CO)_(12) with Fc-C≡C-Ph. The structures of compounds 1~6 were determined by X-ray single-crystal diffraction and spectroscopic characterization. The crystal structures of two new compounds 5 and 6 were analyzed. Our experimental results reveal the structural models of the reaction products are affected by the kinds of substituents from alkynes R-C≡C-R′. 展开更多
关键词 substituted cyclopentadienone carbonyl iron complex reactivity of alkyne ferrole complex molecule and crystal structure
下载PDF
Characterization of char from high temperature fluidized bed coal pyrolysis in complex atmospheres 被引量:7
6
作者 Mei Zhong Shiqiu Gao +3 位作者 Qi Zhou Junrong Yue Fengyun Ma Guangwen Xu 《Particuology》 SCIE EI CAS CSCD 2016年第2期59-67,共9页
The physiochemical properties of chars produced by coal pyrolysis in a laboratory-scale fluidized bed reactor with a continuous coal feed and char discharge at temperatures of 750 to 980 ~ C under N2-based atmospheres... The physiochemical properties of chars produced by coal pyrolysis in a laboratory-scale fluidized bed reactor with a continuous coal feed and char discharge at temperatures of 750 to 980 ~ C under N2-based atmospheres containing 02, H2, CO, CH4, and CO2 were studied. The specific surface area of the char was found to decrease with increasing pyrolysis temperature. The interlayer spacing of the char also decreased, while the average stacking height and carbon crystal size increased at higher temperatures, suggesting that the char generated at high temperatures had a highly ordered structure. The char obtained using an ER value of 0.064 exhibited the highest specific surface area and oxidation reactivity. Rela- tively high 02 concentrations degraded the pore structure of the char, decreasing the surface area. The char produced in an atmosphere incorporating H2 showed a more condensed crystalline structure and consequently had lower oxidation reactivity. 展开更多
关键词 Pyrolysis Coal char Oxidation reactivity Active sites Crystal structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部