Indium tin oxide (ITO) films were prepared on polyester, Si and glass substrate with relatively high deposition rate of above 0.9 nm/s by DC reactive magnetron sputtering technique at the sputtering pressure of 0.06 P...Indium tin oxide (ITO) films were prepared on polyester, Si and glass substrate with relatively high deposition rate of above 0.9 nm/s by DC reactive magnetron sputtering technique at the sputtering pressure of 0.06 Pa system, respectively. The dependence of resistivity on deposition parameters, such as deposition rate, target-to-substrate distance (TSD), oxygen flow rate and sputtering time (thickness), has been investigated, together with the structural and the optical properties. It was revealed that all ITO films exhibited lattice expansion. The resistivity of ITO thin films shows significant substrate effect: much lower resistivity and broader process window have been reproducibly achieved for the deposition of ITO films onto polyester rather than those prepared on both Si and glass substrates. The films with resistivity of as low as 4.23 x 10^-4 Ω.cm and average transmittance of ~78% at wavelength of 400~700 nm have been achieved for the films on polyester at room temperature.展开更多
TiO2 thin film has attracted considerable attention in recent years, due to its different refractive index and transparency with amorphous and different crysta ls in the visible and near-infrared wavelength region, hi...TiO2 thin film has attracted considerable attention in recent years, due to its different refractive index and transparency with amorphous and different crysta ls in the visible and near-infrared wavelength region, high dielectric constant, wide band gap, high wear resistance and stability, etc, for which make it being used in many fields. This paper aims to investigate the optical characterizatio n of thin film TiO2 on silicon wafer. The TiO2 thin films were prepared by DC re active magnetron sputtering process from Ti target. The reflectivity of the film s was measured by UV-3101PC, and the index of refraction (n) and extinction coef ficient (k) were measured by n & k Analyzer 1200.展开更多
Carbon nitride CN. thin films have been deposited on polycrystalline β-Si3N4 substrates by un-balanced magnetron sputtering in a nitrogen discharge. Both the film deposition rate and the nitrogen concentration decrea...Carbon nitride CN. thin films have been deposited on polycrystalline β-Si3N4 substrates by un-balanced magnetron sputtering in a nitrogen discharge. Both the film deposition rate and the nitrogen concentration decrease with substrate temperature increase in the range of 100~400℃The maximum of nitrogen content is 40 at. pct. Raman spectroscopy and atomic force mi-croscopy were used to characterize the bonding, microstructure and surface roughness of the films. Nanoindentation experiments exhibit a higher hardness of 70 GPa and an extremely elas-tic recovery of 85% at higher substrate temperature.展开更多
Using a radio-frequency reactive magnetron sputtering technique, a series of the single-phased Ag20 films are deposited in a mixture of oxygen and argon gas with a flow ratio of 2:3 by changing substrate temperature ...Using a radio-frequency reactive magnetron sputtering technique, a series of the single-phased Ag20 films are deposited in a mixture of oxygen and argon gas with a flow ratio of 2:3 by changing substrate temperature (Ts). Effects of the Ts on the microstructure and optical properties of the films are investigated by using X-ray diffractometry, scanning electron microscopy and spectrophotometry. The single-phased Ag20 films deposited at values of Ts below 200℃ are (111) preferentially oriented, which may be due to the smallest free energy of the (111) crystalline face. The film crystallization becomes poor as the value of Ts increases from 100℃ to 225℃. In particular, the Ag20 film deposited at Ts=225℃ loses the (111) preferential orientation. Correspondingly, the film surface morphology obviously evolves from a uniform and compact surface structure to a loose and gullied surface structure. With the increase of Ts value, the transmissivity and the reflectivity of the films in the transparent region are gradually reduced, while the absorptivity gradually increases, which may be attributed to an evolution of the crystalline structure and the surface morphology of the films.展开更多
This paper reports that a series of silver oxide (AgzO) films are deposited on glass substrates by direct-current reactive magnetron sputtering at a substrate temperature of 250 ℃ and an oxygen flux ratio of 15:18...This paper reports that a series of silver oxide (AgzO) films are deposited on glass substrates by direct-current reactive magnetron sputtering at a substrate temperature of 250 ℃ and an oxygen flux ratio of 15:18 by modifying the sputtering power (SP). The AgxO films deposited apparently show a structural evolution from cubic biphased (AgO + Ag20) to cubic single-phased (Ag20), and to biphased (Ag20 + AgO) structure. Notably, the cubic single-phased Ag20 fihn is deposited at the SP = 105 W and an AgO phase with (220) orientation discerned in the Ag^O films deposited using the SP 〉 105 W. The transmissivity and refiectivity of the AgxO films in transparent region decrease with the increase the SP, whereas the absorptivity inversely increases with the increase of the SP. These results may be due to the structural evolution and the increasing film thickness. A redshift of the films' absorption edges determined in terms of Tauc formula clearly occurs from 3.1 eV to 2.73 eV with the increase of the SP.展开更多
Hydrogenated Cr-incorporated carbon films (Cr/a-C:H) are deposited successfully by using a dc reactive mag- netron sputtering system. The structure and mechanical properties of the as-deposited Cr/a-C:H films are ...Hydrogenated Cr-incorporated carbon films (Cr/a-C:H) are deposited successfully by using a dc reactive mag- netron sputtering system. The structure and mechanical properties of the as-deposited Cr/a-C:H films are characterized systematically by field-emission scanning electron microscope, x-ray diffraction, Raman spectra, nanoindentation and scratch. It is shown that optimal Cr metal forms nanocrystalline carbide to improve the hardness, toughness and adhesion strength in the amorphous carbon matrix, which possesses relatively higher nano-hardness of 15. 7 CPa, elastic modulus of 126.8 GPa and best adhesion strength with critical load (Lc) of 36 N for the Cr/a-C:H film deposited at CH4 flow rate of 20sccm. The friction and wear behaviors of as-deposited Cr/a-C:H films are evaluated under both the ambient air and deionized water conditions. The results reveal that it can achieve superior low friction and anti-wear performance for the Cr/a-C:H film deposited at CH4 flow rate of 20sccm under the ambient air condition, and the friction coetllcient and wear rate tested in deionized water condition are relatively lower compared with those tested under the ambient air condition for each film. Superior combination of mechanical and tribological properties for the Cr/a-C:H film should be a good candidate for engineering applications.展开更多
To explore the relationship between the chemical bonding and mechanical properties for germanium carbide (Ge1-xCx) films,the Ge1-xCx films are prepared via reactive magnetron sputtering in a mixture of CH4/Ar discharg...To explore the relationship between the chemical bonding and mechanical properties for germanium carbide (Ge1-xCx) films,the Ge1-xCx films are prepared via reactive magnetron sputtering in a mixture of CH4/Ar discharge,and their composition,chemical bonding and hardness were investigated as a function of substrate temperature (Ts). The results show that Ts remarkably influences the chemical bonding of Ge1-xCx film,which results in a pronounced change in the film hardness. As Ts increases from ambient (60 ℃) to 500 ℃,the Ge content in the film gradually increases,which promotes forming sp3 C-Ge bonds in the film at the expense of sp2C-C bonds. Furthermore,it is found that with increasing Ts the fraction of C-H bonds in Ge1-xCx film gradually decreases,which is attributed to an enhancement in the desorption rate of C-Hn(n=1,2,3) species decomposed from methane. The transition from graphite-like sp2 C-C to diamond-like sp3C-Ge bonds as well as the reduction in C-H bonds in the film with increasing Ts promotes forming the compact three-dimensional network structure,which significantly enhances the hardness of the film from 5.8 to 10.1 GPa.展开更多
In the present study,WB 2(N) films are fabricated on silicon and YG8 substrates at different N 2 pressures by reactive magnetron sputtering.The influence of N 2 partial pressure(P (N2)) on the film microstructur...In the present study,WB 2(N) films are fabricated on silicon and YG8 substrates at different N 2 pressures by reactive magnetron sputtering.The influence of N 2 partial pressure(P (N2)) on the film microstructure and characteristics is studied systematically,including the chemical composition,crystalline structure,residual stress,surface roughness as well as the surface and the cross-section morphology.Meanwhile,nano-indentation and ball-on-disk tribometer are performed to analyze the mechanical and tribological properties of the films.The results show that the addition of nitrogen apparently leads to the change of the structure from(1 0 1) to(0 0 1) orientation then to the amorphous structure with the formation of BN phase.And the addition of nitrogen can greatly refine the grain size and microstructure of the films.Furthermore,the residual stress of the film is also found to change from tensile to compressive stress as a function of P (N2),and the compressive stress increases with P (N2),The WB 2(N) films with small nitrogen content,which are deposited at P (N2) of 0.004 and 0.006 Pa,exhibit better mechanical,tribological and corrosion properties than those of other films.Further increase of nitrogen content accelerates the formation of BN phase and fast decreases the film hardness.In addition,the large N 2 partial pressure gives rise to the target poisoning accompanied by the increase of the target voltage and the decrease of the deposition rate.展开更多
Quaternary Ti–B–C–N coatings with various carbon contents were deposited on high-speed steel (HSS) substrates by reactive magnetron sputtering (RMS) system. The elevated-temperature tribological behavior of Ti–B–...Quaternary Ti–B–C–N coatings with various carbon contents were deposited on high-speed steel (HSS) substrates by reactive magnetron sputtering (RMS) system. The elevated-temperature tribological behavior of Ti–B–C–N coatings was explored using pin-on-disk tribometer, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The present results show that the steady-state friction coefficient value and the instantaneous friction coefficient fluctuation range of Ti–B–C–N coatings decrease as carbon content increases at 100 and 300°C, while the steady-state friction coefficient value of all Ti–B–C–N coatings becomes higher than 0.4 at 500°C. As ambient temperature increases, the running-in periods of all Ti–B–C–N coatings become shorter. Wear damage to Ti–B–C–N coatings during sliding at elevated temperature is mainly caused by adhesive wear, and adhesive-wear damage to Ti–B–C–N coatings increases as ambient temperature increases; however, higher carbon content is beneficial for decreasing the adhesive-wear damage to Ti–B–C–N coatings during sliding at elevated temperature.展开更多
Cuprous oxide(Cu_2O) thin films have been deposited on glass substrate by reactive magnetron sputtering method using Cu target and argon oxygen gas atmosphere.Effect of oxygen flow rate on structural and optical prope...Cuprous oxide(Cu_2O) thin films have been deposited on glass substrate by reactive magnetron sputtering method using Cu target and argon oxygen gas atmosphere.Effect of oxygen flow rate on structural and optical properties of thin films has been discussed.The results of X-ray diffraction,ultraviolet-visible spectrophotometry and atomic force micrograph indicated that the condition window for single Cu_2O phase was about 3.8 to 4.4 cm^3/min,and the optimum oxygen flow rate was 4.2 cm^3/min.The optical band gap E_g of Cu_2O film was determined by using the data of transmittance versus wavelength,and slightly decreased from 2.46 to 2.40 eV with the increase of oxygen flow rate from 3.8 to 4.4 cm^3/min.The Cu_2O film formed at the oxygen flow rate of 4.2 cm^3/min had an optical band gap of 2.43 eV.展开更多
The relationship of "preparation parameters-microstructures-wettability" of TiO2 films was reported. In this work, TiO2 films were deposited onto glass and silicon substrates by using mid-frequency dual magnetron sp...The relationship of "preparation parameters-microstructures-wettability" of TiO2 films was reported. In this work, TiO2 films were deposited onto glass and silicon substrates by using mid-frequency dual magnetron sputtering technique at ambient temperature with various power densities and deposition time. After deposition, the films were heat treated at different annealing temperatures. X-ray diffraction (XRD), Raman spectroscopy, and field-emission scanning electron microscopy (FE-SEM) were utilized to characterize TiO2 films. The wettability of the films was evaluated by water contact angle measurement. The phase transition temperature of TiO2 films depended on the power density. It was demonstrated that wettability was strongly structure dependent and the film with the thickness of 610 nm (the power density was 2.22 W/cm^2) showed the lowest contact angle (8°). It can be concluded that smaller crystallite size, the rutile phase with (110) face being parallel to the surface, and tensile stress favored the hydrophilicity of the TiO2 films.展开更多
The microstructure, mechanical, and tribological properties of the carbon nitride (CNx) thin films with different nitrogen contents deposited on high-speed steel substrates by reactive magnetron sputtering were stud...The microstructure, mechanical, and tribological properties of the carbon nitride (CNx) thin films with different nitrogen contents deposited on high-speed steel substrates by reactive magnetron sputtering were studied. CNx films with nitrogen contents from 10.7 to 28.2 at.% had an amorphous structure composing of the carbon bonds of sp2C-C, sp2C-N, and sp3C-N. The TiN inter-layer cause the adhesion of CNx films enhancement. The more nitrogen concentration led to larger film hardness and friction coefficient against GCrl5 steel balls, but the wear rates decreased.展开更多
An MWCNT-doped (multi-walled carbon nanotube) Sn02 thin film NO2 gas sensor, prepared by radio frequency reactive magnetron sputtering, showed a high sensitivity to ultra-low concentrations of NO2 in the parts per b...An MWCNT-doped (multi-walled carbon nanotube) Sn02 thin film NO2 gas sensor, prepared by radio frequency reactive magnetron sputtering, showed a high sensitivity to ultra-low concentrations of NO2 in the parts per billion range. X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy (SEM) characterizations indicated that the MWCNTs were affected by the morphology of the SnO2 thin film and the particle size. The properties of the MWCNT-doped SnO2 sensor, such as sensitivity, selectivity, and response-recovery time, were investigated. Experimental results revealed that the MWCNT-doped SnO2 thin film sensor response to NO2 gas depended on the operating temperature, NO2 gas concentration, thermal treatment conditions, film thickness, and so on. The mechanism of the gas-sensing property of the MWCNT-doped SnO2 thin film sensor was investigated and showed that the improved gas-sensing performance should be attributed to the effects between MWCNTs (p-type) and SnO2 (n-type) semiconductors.展开更多
CO2 and O2 were employed as reactive gases to fabricate carbon-doped titanium oxide films using DC reactive magnetron sputtering. Microstructure, composition and optical band gap of the films were investigated by X-ra...CO2 and O2 were employed as reactive gases to fabricate carbon-doped titanium oxide films using DC reactive magnetron sputtering. Microstructure, composition and optical band gap of the films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and UV-visible spectrophotometer, respectively. The results showed that carbon-doped titanium monoxide films (C-TiO) with a carbon concentration of 5.8 at.% were obtained in an AffCO2 mixed atmosphere. However, carbon-doped futile and anatase (C-TiO2) with a carbon concentration of about 1.4 at.% were obtained in an Ar/CO2/O2 mixed atmosphere. The optical band gaps of C-TiO and C-TiO2 were about 2.6 and 2.9 eV, respectively. Both of them were narrower than that of pure TiO2 films. Films with narrowed optical band gap energy are promising in promoting their photo-catalytic activity.展开更多
A sintered Ti13Cus7 target was sputtered by reactive direct current (DC) magnetron sputtering with a gas mixture of argon/nitrogen for different sputtering powers. Titanium-coppernitrogen thin films were deposited o...A sintered Ti13Cus7 target was sputtered by reactive direct current (DC) magnetron sputtering with a gas mixture of argon/nitrogen for different sputtering powers. Titanium-coppernitrogen thin films were deposited on Si (111), glass slide and potassium bromide (KBr) substrates. Phase analysis and structural properties of titanium-copper-nitrogen thin films were studied by X-ray diffraction (XRD). The chemical bonding was characterized by Fourier transform infrared (FTIR) spectroscopy. The results from XRD show that the observed phases are nano-crystallite cubic anti rhenium oxide (anti ReO3) structures of titanium doped Cu3N (Ti:Cu3N) and nanocrystallite face centered cubic (fcc) structures of copper. Scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM/EDX) were used to determine the film morphology and atomic titanium/copper ratio, respectively. The films possess continuous and agglomerated structure with an atomic titanium/copper ratio (-0.07) below that of the original target (- 0.15). The transmittance spectra of the composite films were measured in the range of 360 nm to 1100 nm. Film thickness, refractive index and extinction coefficient were extracted from the measured transmittance using a reverse engineering method. In the visible range, the higher absorption coefficient of the films prepared at lower sputtering power indicates more nitrification in comparison to those prepared at higher sputtering power. This is consistent with the formation of larger Ti:Cu3N crystallites at lower sputtering power. The deposition rate vs. sputtering power shows an abrupt transition from metallic mode to poisoned mode. A complicated behavior of the films' resistivity upon sputtering power is shown.展开更多
Ni-Cr System solar selective thin solid films were prepared by d.c. magnetron reactive sputtering under the atmosphere of O2 and N2. Ni-Cr alloy was chosen as target material and copper sheets as substrate. Using SEAL...Ni-Cr System solar selective thin solid films were prepared by d.c. magnetron reactive sputtering under the atmosphere of O2 and N2. Ni-Cr alloy was chosen as target material and copper sheets as substrate. Using SEAL Spectrophotometer and Talystep to analyze the relations between the selective characteristic and the structure, the formation and the thickness of the thin films. The aim is to obtain good solar selective thin films with high absorptance and low emittance, which is applied to flat plate solar heat collectors.展开更多
Nitrogen doping of silver oxide (AgxO) film is necessary for its application in transparent conductive film and diodes because intrinsic AgxO film is a p-type semiconductor with poor conductivity. In this work, a se...Nitrogen doping of silver oxide (AgxO) film is necessary for its application in transparent conductive film and diodes because intrinsic AgxO film is a p-type semiconductor with poor conductivity. In this work, a series of AgxO films is deposited on glass substrates by direct-current magnetron reactive sputtering at different flow ratios (FRs) of nitrogen to 02. Evolutions of the structure, the refiectivity, and the transmissivity of the film are studied by X-ray diffractometry and sphectrophotometry, respectively. The specular transmissivity and the specular refiectivity of the film decreasing with FR increasing can be attributed to the evolution of the phase structure of the film. The nitrogen does not play the role of an acceptor dopant in the film deposition.展开更多
Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, A...Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, AFM, XPS and nanoindenter techniques. It is suggested from the XRD patterns that highly c-axis oriented films grow preferentially at low pressures and the growth of(100) planes are preferred at higher pressures. The SEM and AFM images both reveal that the deposition rate and the surface roughness decrease while the average grain size increases with increasing the sputtering pressure. XPS results show that lowering the sputtering pressure is a useful way to minimize the incorporation of oxygen atoms into the AlN films and hence a film with closer stoichiometric composition is obtained. From the measurement of nanomechanical properties of AlN thin films, the largest hardness and elastic modulus are obtained at 0.30 Pa.展开更多
Some fundamental studies on the preparation, structure and optical properties of NbN films were carried out. NbN thin films were deposited by DC reactive magnetron sputtering at different N2 partial pressures and diff...Some fundamental studies on the preparation, structure and optical properties of NbN films were carried out. NbN thin films were deposited by DC reactive magnetron sputtering at different N2 partial pressures and different substrate temperatures ranging from -50℃ to 600℃. X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) were employed to characterize their phase components, microstructures, grain sizes and surface morphology. Optical properties inclusive of refractive indexes, extinction coefficients and transmittance of the NbN films under different sputtering conditions were measured. With the increase in the N2 partial pressure, 6-NbN phase structure gets forming and the grain size and lattice constant of the cubic NbN increasing. The deposited NbN film has relatively high values of refractive index and extinction coefficient in the wavelength ranging from 240 nm to 830 nm. Substrate temperature exerts notable influences on the microstructure and optical transmittance of the NbN films. The grain sizes of the 6-NbN film remarkably increase with the rise of the substrate temperature, while the transmittance of the films with the same thickness decreases. Ultra-fine granular film with particle size of several nanometers forms when the substrate is cooled to -50℃, and a remarkable augmentation of transmittance could be noticed under so low a temperature.展开更多
The need for reducing the wear in mechanical parts used in the industry makes self-lubricant films one of the sustainable solutions to achieve long-term protection under different environmental conditions.The purpose ...The need for reducing the wear in mechanical parts used in the industry makes self-lubricant films one of the sustainable solutions to achieve long-term protection under different environmental conditions.The purpose of this work is to study the influence of C additions on the tribological behavior of a magnetron-sputtered TiN film in air,water,and seawater.The results show that the addition of C into the TiN binary film induced a new amorphous phase,and the films exhibited a dual phase of fcc(face-centered cubic)-TiN and amorphous carbon.The antifriction and wear-resistance properties were enhanced in air and water by adding 19.1at%C.However,a further increase in the C concentration improved anti-frictional properties but also led to higher wear rates.Although the amorphous phase induced microbatteries and accelerated the corrosion of TiN phases in seawater,the negative abrasion state was detected for all Ti-C-N films due to the adhesion of the tribocorrosion debris on the wear track.展开更多
文摘Indium tin oxide (ITO) films were prepared on polyester, Si and glass substrate with relatively high deposition rate of above 0.9 nm/s by DC reactive magnetron sputtering technique at the sputtering pressure of 0.06 Pa system, respectively. The dependence of resistivity on deposition parameters, such as deposition rate, target-to-substrate distance (TSD), oxygen flow rate and sputtering time (thickness), has been investigated, together with the structural and the optical properties. It was revealed that all ITO films exhibited lattice expansion. The resistivity of ITO thin films shows significant substrate effect: much lower resistivity and broader process window have been reproducibly achieved for the deposition of ITO films onto polyester rather than those prepared on both Si and glass substrates. The films with resistivity of as low as 4.23 x 10^-4 Ω.cm and average transmittance of ~78% at wavelength of 400~700 nm have been achieved for the films on polyester at room temperature.
基金This work was supported by the National Natural Science Foundation of China(No,50376067)the Plan for Science&Technology Development of Guangzhou(2001-Z-117-01).
文摘TiO2 thin film has attracted considerable attention in recent years, due to its different refractive index and transparency with amorphous and different crysta ls in the visible and near-infrared wavelength region, high dielectric constant, wide band gap, high wear resistance and stability, etc, for which make it being used in many fields. This paper aims to investigate the optical characterizatio n of thin film TiO2 on silicon wafer. The TiO2 thin films were prepared by DC re active magnetron sputtering process from Ti target. The reflectivity of the film s was measured by UV-3101PC, and the index of refraction (n) and extinction coef ficient (k) were measured by n & k Analyzer 1200.
文摘Carbon nitride CN. thin films have been deposited on polycrystalline β-Si3N4 substrates by un-balanced magnetron sputtering in a nitrogen discharge. Both the film deposition rate and the nitrogen concentration decrease with substrate temperature increase in the range of 100~400℃The maximum of nitrogen content is 40 at. pct. Raman spectroscopy and atomic force mi-croscopy were used to characterize the bonding, microstructure and surface roughness of the films. Nanoindentation experiments exhibit a higher hardness of 70 GPa and an extremely elas-tic recovery of 85% at higher substrate temperature.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60807001)the Foundation of Henan Educational Committee,China (Grant No. 2010A140017)the National Basic Research Program of China (Grant No. 2011CB201605)
文摘Using a radio-frequency reactive magnetron sputtering technique, a series of the single-phased Ag20 films are deposited in a mixture of oxygen and argon gas with a flow ratio of 2:3 by changing substrate temperature (Ts). Effects of the Ts on the microstructure and optical properties of the films are investigated by using X-ray diffractometry, scanning electron microscopy and spectrophotometry. The single-phased Ag20 films deposited at values of Ts below 200℃ are (111) preferentially oriented, which may be due to the smallest free energy of the (111) crystalline face. The film crystallization becomes poor as the value of Ts increases from 100℃ to 225℃. In particular, the Ag20 film deposited at Ts=225℃ loses the (111) preferential orientation. Correspondingly, the film surface morphology obviously evolves from a uniform and compact surface structure to a loose and gullied surface structure. With the increase of Ts value, the transmissivity and the reflectivity of the films in the transparent region are gradually reduced, while the absorptivity gradually increases, which may be attributed to an evolution of the crystalline structure and the surface morphology of the films.
基金supported by the National Natural Science Foundation of China (Grant No. 60807001)the National Basic Research Program of China (Grant No. 2011CB201605)the Foundation of Henan Educational Committee (Grant No. 2010A140017)
文摘This paper reports that a series of silver oxide (AgzO) films are deposited on glass substrates by direct-current reactive magnetron sputtering at a substrate temperature of 250 ℃ and an oxygen flux ratio of 15:18 by modifying the sputtering power (SP). The AgxO films deposited apparently show a structural evolution from cubic biphased (AgO + Ag20) to cubic single-phased (Ag20), and to biphased (Ag20 + AgO) structure. Notably, the cubic single-phased Ag20 fihn is deposited at the SP = 105 W and an AgO phase with (220) orientation discerned in the Ag^O films deposited using the SP 〉 105 W. The transmissivity and refiectivity of the AgxO films in transparent region decrease with the increase the SP, whereas the absorptivity inversely increases with the increase of the SP. These results may be due to the structural evolution and the increasing film thickness. A redshift of the films' absorption edges determined in terms of Tauc formula clearly occurs from 3.1 eV to 2.73 eV with the increase of the SP.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51302116 and 51365016the Open Fund Item of State Key Laboratory of Solid Lubrication of Lanzhou Institute of Chemical Physics of Chinese Academy of Sciences under Grant No LSL-1203
文摘Hydrogenated Cr-incorporated carbon films (Cr/a-C:H) are deposited successfully by using a dc reactive mag- netron sputtering system. The structure and mechanical properties of the as-deposited Cr/a-C:H films are characterized systematically by field-emission scanning electron microscope, x-ray diffraction, Raman spectra, nanoindentation and scratch. It is shown that optimal Cr metal forms nanocrystalline carbide to improve the hardness, toughness and adhesion strength in the amorphous carbon matrix, which possesses relatively higher nano-hardness of 15. 7 CPa, elastic modulus of 126.8 GPa and best adhesion strength with critical load (Lc) of 36 N for the Cr/a-C:H film deposited at CH4 flow rate of 20sccm. The friction and wear behaviors of as-deposited Cr/a-C:H films are evaluated under both the ambient air and deionized water conditions. The results reveal that it can achieve superior low friction and anti-wear performance for the Cr/a-C:H film deposited at CH4 flow rate of 20sccm under the ambient air condition, and the friction coetllcient and wear rate tested in deionized water condition are relatively lower compared with those tested under the ambient air condition for each film. Superior combination of mechanical and tribological properties for the Cr/a-C:H film should be a good candidate for engineering applications.
基金Sponsored by the National Natural Science Foundation of China ( Grant No. 50525204 and 50832001)the special Ph.D. Program ( Grant No.200801830025) from MOE+2 种基金the "211" and "985" Project of Jilin University, Chinathe program for Changjiang Scholars and Innovative Research Teamin UniversityScience Frontier and Cross-disciplinary Innovation Project of Jilin University, China (Grant No. 200903022)
文摘To explore the relationship between the chemical bonding and mechanical properties for germanium carbide (Ge1-xCx) films,the Ge1-xCx films are prepared via reactive magnetron sputtering in a mixture of CH4/Ar discharge,and their composition,chemical bonding and hardness were investigated as a function of substrate temperature (Ts). The results show that Ts remarkably influences the chemical bonding of Ge1-xCx film,which results in a pronounced change in the film hardness. As Ts increases from ambient (60 ℃) to 500 ℃,the Ge content in the film gradually increases,which promotes forming sp3 C-Ge bonds in the film at the expense of sp2C-C bonds. Furthermore,it is found that with increasing Ts the fraction of C-H bonds in Ge1-xCx film gradually decreases,which is attributed to an enhancement in the desorption rate of C-Hn(n=1,2,3) species decomposed from methane. The transition from graphite-like sp2 C-C to diamond-like sp3C-Ge bonds as well as the reduction in C-H bonds in the film with increasing Ts promotes forming the compact three-dimensional network structure,which significantly enhances the hardness of the film from 5.8 to 10.1 GPa.
基金supported by the National Key Basic Research Program of China (973 Program,No.2012CB625100)the Natural Science Foundation of Liaoning Province of China (No.2013020093)
文摘In the present study,WB 2(N) films are fabricated on silicon and YG8 substrates at different N 2 pressures by reactive magnetron sputtering.The influence of N 2 partial pressure(P (N2)) on the film microstructure and characteristics is studied systematically,including the chemical composition,crystalline structure,residual stress,surface roughness as well as the surface and the cross-section morphology.Meanwhile,nano-indentation and ball-on-disk tribometer are performed to analyze the mechanical and tribological properties of the films.The results show that the addition of nitrogen apparently leads to the change of the structure from(1 0 1) to(0 0 1) orientation then to the amorphous structure with the formation of BN phase.And the addition of nitrogen can greatly refine the grain size and microstructure of the films.Furthermore,the residual stress of the film is also found to change from tensile to compressive stress as a function of P (N2),and the compressive stress increases with P (N2),The WB 2(N) films with small nitrogen content,which are deposited at P (N2) of 0.004 and 0.006 Pa,exhibit better mechanical,tribological and corrosion properties than those of other films.Further increase of nitrogen content accelerates the formation of BN phase and fast decreases the film hardness.In addition,the large N 2 partial pressure gives rise to the target poisoning accompanied by the increase of the target voltage and the decrease of the deposition rate.
基金financially supported by the Natural Science Foundation of China(No.81501598)the International Science and Technology Cooperation Program of China(No.2008DFA51470)+1 种基金the State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong University(No.20141604)
文摘Quaternary Ti–B–C–N coatings with various carbon contents were deposited on high-speed steel (HSS) substrates by reactive magnetron sputtering (RMS) system. The elevated-temperature tribological behavior of Ti–B–C–N coatings was explored using pin-on-disk tribometer, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The present results show that the steady-state friction coefficient value and the instantaneous friction coefficient fluctuation range of Ti–B–C–N coatings decrease as carbon content increases at 100 and 300°C, while the steady-state friction coefficient value of all Ti–B–C–N coatings becomes higher than 0.4 at 500°C. As ambient temperature increases, the running-in periods of all Ti–B–C–N coatings become shorter. Wear damage to Ti–B–C–N coatings during sliding at elevated temperature is mainly caused by adhesive wear, and adhesive-wear damage to Ti–B–C–N coatings increases as ambient temperature increases; however, higher carbon content is beneficial for decreasing the adhesive-wear damage to Ti–B–C–N coatings during sliding at elevated temperature.
基金the National Natural Science Foundation of China(No.61176062)the Fundamental Research Funds for the Central Universities (No.NZ2012309)
文摘Cuprous oxide(Cu_2O) thin films have been deposited on glass substrate by reactive magnetron sputtering method using Cu target and argon oxygen gas atmosphere.Effect of oxygen flow rate on structural and optical properties of thin films has been discussed.The results of X-ray diffraction,ultraviolet-visible spectrophotometry and atomic force micrograph indicated that the condition window for single Cu_2O phase was about 3.8 to 4.4 cm^3/min,and the optimum oxygen flow rate was 4.2 cm^3/min.The optical band gap E_g of Cu_2O film was determined by using the data of transmittance versus wavelength,and slightly decreased from 2.46 to 2.40 eV with the increase of oxygen flow rate from 3.8 to 4.4 cm^3/min.The Cu_2O film formed at the oxygen flow rate of 4.2 cm^3/min had an optical band gap of 2.43 eV.
文摘The relationship of "preparation parameters-microstructures-wettability" of TiO2 films was reported. In this work, TiO2 films were deposited onto glass and silicon substrates by using mid-frequency dual magnetron sputtering technique at ambient temperature with various power densities and deposition time. After deposition, the films were heat treated at different annealing temperatures. X-ray diffraction (XRD), Raman spectroscopy, and field-emission scanning electron microscopy (FE-SEM) were utilized to characterize TiO2 films. The wettability of the films was evaluated by water contact angle measurement. The phase transition temperature of TiO2 films depended on the power density. It was demonstrated that wettability was strongly structure dependent and the film with the thickness of 610 nm (the power density was 2.22 W/cm^2) showed the lowest contact angle (8°). It can be concluded that smaller crystallite size, the rutile phase with (110) face being parallel to the surface, and tensile stress favored the hydrophilicity of the TiO2 films.
基金supported by the International Science and Technology Cooperation Program of China(No. 2008DFA51470)
文摘The microstructure, mechanical, and tribological properties of the carbon nitride (CNx) thin films with different nitrogen contents deposited on high-speed steel substrates by reactive magnetron sputtering were studied. CNx films with nitrogen contents from 10.7 to 28.2 at.% had an amorphous structure composing of the carbon bonds of sp2C-C, sp2C-N, and sp3C-N. The TiN inter-layer cause the adhesion of CNx films enhancement. The more nitrogen concentration led to larger film hardness and friction coefficient against GCrl5 steel balls, but the wear rates decreased.
基金supported by the National High Technology Research and Development Program of China(No.2007AA03Z325 )
文摘An MWCNT-doped (multi-walled carbon nanotube) Sn02 thin film NO2 gas sensor, prepared by radio frequency reactive magnetron sputtering, showed a high sensitivity to ultra-low concentrations of NO2 in the parts per billion range. X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy (SEM) characterizations indicated that the MWCNTs were affected by the morphology of the SnO2 thin film and the particle size. The properties of the MWCNT-doped SnO2 sensor, such as sensitivity, selectivity, and response-recovery time, were investigated. Experimental results revealed that the MWCNT-doped SnO2 thin film sensor response to NO2 gas depended on the operating temperature, NO2 gas concentration, thermal treatment conditions, film thickness, and so on. The mechanism of the gas-sensing property of the MWCNT-doped SnO2 thin film sensor was investigated and showed that the improved gas-sensing performance should be attributed to the effects between MWCNTs (p-type) and SnO2 (n-type) semiconductors.
基金supported by the National Natural Science Foundation of China (Nos.81171462 and 51062002)the Sichuan Youth Science & Technology Foundation for Distinguished Young Scholars (No.2012JQ0001)the Fundamental Research Funds for the Central Universities (Nos.SWJTU11CX078 and SWJTU12ZT08)
文摘CO2 and O2 were employed as reactive gases to fabricate carbon-doped titanium oxide films using DC reactive magnetron sputtering. Microstructure, composition and optical band gap of the films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and UV-visible spectrophotometer, respectively. The results showed that carbon-doped titanium monoxide films (C-TiO) with a carbon concentration of 5.8 at.% were obtained in an AffCO2 mixed atmosphere. However, carbon-doped futile and anatase (C-TiO2) with a carbon concentration of about 1.4 at.% were obtained in an Ar/CO2/O2 mixed atmosphere. The optical band gaps of C-TiO and C-TiO2 were about 2.6 and 2.9 eV, respectively. Both of them were narrower than that of pure TiO2 films. Films with narrowed optical band gap energy are promising in promoting their photo-catalytic activity.
基金the financial support of the Iranian nanotechnology initiative
文摘A sintered Ti13Cus7 target was sputtered by reactive direct current (DC) magnetron sputtering with a gas mixture of argon/nitrogen for different sputtering powers. Titanium-coppernitrogen thin films were deposited on Si (111), glass slide and potassium bromide (KBr) substrates. Phase analysis and structural properties of titanium-copper-nitrogen thin films were studied by X-ray diffraction (XRD). The chemical bonding was characterized by Fourier transform infrared (FTIR) spectroscopy. The results from XRD show that the observed phases are nano-crystallite cubic anti rhenium oxide (anti ReO3) structures of titanium doped Cu3N (Ti:Cu3N) and nanocrystallite face centered cubic (fcc) structures of copper. Scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM/EDX) were used to determine the film morphology and atomic titanium/copper ratio, respectively. The films possess continuous and agglomerated structure with an atomic titanium/copper ratio (-0.07) below that of the original target (- 0.15). The transmittance spectra of the composite films were measured in the range of 360 nm to 1100 nm. Film thickness, refractive index and extinction coefficient were extracted from the measured transmittance using a reverse engineering method. In the visible range, the higher absorption coefficient of the films prepared at lower sputtering power indicates more nitrification in comparison to those prepared at higher sputtering power. This is consistent with the formation of larger Ti:Cu3N crystallites at lower sputtering power. The deposition rate vs. sputtering power shows an abrupt transition from metallic mode to poisoned mode. A complicated behavior of the films' resistivity upon sputtering power is shown.
基金supported by the Chinese Academy of Sciences within“The Hundred Talent Project"by the Bureau for Sciences and Technology of Guangzhou City within the"Nanoproject"
文摘Ni-Cr System solar selective thin solid films were prepared by d.c. magnetron reactive sputtering under the atmosphere of O2 and N2. Ni-Cr alloy was chosen as target material and copper sheets as substrate. Using SEAL Spectrophotometer and Talystep to analyze the relations between the selective characteristic and the structure, the formation and the thickness of the thin films. The aim is to obtain good solar selective thin films with high absorptance and low emittance, which is applied to flat plate solar heat collectors.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60807001)the Foundation of Henan Educational Committee,China (Grant No. 2010A140017)the College Young Teachers Program of Henan Province and the Graduate Innovation Fund of Zhengzhou University (Grant No. 11L10102)
文摘Nitrogen doping of silver oxide (AgxO) film is necessary for its application in transparent conductive film and diodes because intrinsic AgxO film is a p-type semiconductor with poor conductivity. In this work, a series of AgxO films is deposited on glass substrates by direct-current magnetron reactive sputtering at different flow ratios (FRs) of nitrogen to 02. Evolutions of the structure, the refiectivity, and the transmissivity of the film are studied by X-ray diffractometry and sphectrophotometry, respectively. The specular transmissivity and the specular refiectivity of the film decreasing with FR increasing can be attributed to the evolution of the phase structure of the film. The nitrogen does not play the role of an acceptor dopant in the film deposition.
基金Project(21271188)supported by the National Natural Science Foundation of ChinaProject(2012M521541)supported by the China Postdoctoral Science Foundation+2 种基金Project(2012QNZT002)supported by the Fundamental Research Funds for the Central South Universities,ChinaProject(20110933K)supported by the State Key Laboratory of Powder Metallurgy,ChinaProject(CSU2012024)supported by the Open-End Fund for Valuable and Precision Instruments of Central South University,China
文摘Wurtzite aluminum nitride(AlN) films were deposited on Si(100) wafers under various sputtering pressures by radio-frequency(RF) reactive magnetron sputtering. The film properties were investigated by XRD, SEM, AFM, XPS and nanoindenter techniques. It is suggested from the XRD patterns that highly c-axis oriented films grow preferentially at low pressures and the growth of(100) planes are preferred at higher pressures. The SEM and AFM images both reveal that the deposition rate and the surface roughness decrease while the average grain size increases with increasing the sputtering pressure. XPS results show that lowering the sputtering pressure is a useful way to minimize the incorporation of oxygen atoms into the AlN films and hence a film with closer stoichiometric composition is obtained. From the measurement of nanomechanical properties of AlN thin films, the largest hardness and elastic modulus are obtained at 0.30 Pa.
基金National Natural Science Foundation of China (50471004)Foundation of Engineering Institute of Beijing University (204031)Program for New Century Excellent Talents in University (NCET) of China
文摘Some fundamental studies on the preparation, structure and optical properties of NbN films were carried out. NbN thin films were deposited by DC reactive magnetron sputtering at different N2 partial pressures and different substrate temperatures ranging from -50℃ to 600℃. X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) were employed to characterize their phase components, microstructures, grain sizes and surface morphology. Optical properties inclusive of refractive indexes, extinction coefficients and transmittance of the NbN films under different sputtering conditions were measured. With the increase in the N2 partial pressure, 6-NbN phase structure gets forming and the grain size and lattice constant of the cubic NbN increasing. The deposited NbN film has relatively high values of refractive index and extinction coefficient in the wavelength ranging from 240 nm to 830 nm. Substrate temperature exerts notable influences on the microstructure and optical transmittance of the NbN films. The grain sizes of the 6-NbN film remarkably increase with the rise of the substrate temperature, while the transmittance of the films with the same thickness decreases. Ultra-fine granular film with particle size of several nanometers forms when the substrate is cooled to -50℃, and a remarkable augmentation of transmittance could be noticed under so low a temperature.
基金financially supported by the National Natural Science Foundation of China (Nos. 52171071, 52172090, 52071159, and 51801081)Portugal National Funds through FCT project (No. 2021.04115)+4 种基金FEDER National funds FCT under the project CEMMPRE–UIDB/ 00285/2020Outstanding University Young Teachers of “Qing Lan Project” of Jiangsu ProvinceExcellent Talents of “Shenlan Project” of Jiangsu University of Science and Technologyand China Merchants Marine Scientific Research and Innovation FundFilipe Fernandes acknowledges the funding received in the aim of the projects: MCTool21– ref. “POCI-01-0247-FEDER-045940”, CEMMPRE–ref. “UIDB/00285/2020”, and SMARTLUB–ref. “POCI-010145-FEDER-031807”
文摘The need for reducing the wear in mechanical parts used in the industry makes self-lubricant films one of the sustainable solutions to achieve long-term protection under different environmental conditions.The purpose of this work is to study the influence of C additions on the tribological behavior of a magnetron-sputtered TiN film in air,water,and seawater.The results show that the addition of C into the TiN binary film induced a new amorphous phase,and the films exhibited a dual phase of fcc(face-centered cubic)-TiN and amorphous carbon.The antifriction and wear-resistance properties were enhanced in air and water by adding 19.1at%C.However,a further increase in the C concentration improved anti-frictional properties but also led to higher wear rates.Although the amorphous phase induced microbatteries and accelerated the corrosion of TiN phases in seawater,the negative abrasion state was detected for all Ti-C-N films due to the adhesion of the tribocorrosion debris on the wear track.