In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is...In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is proposed in the paper,which takes into account the network loss correction for the extreme cold region.Firstly,an electro-thermal model is introduced to reflect the effect of temperature on conductor resistance and to correct the results of active network loss calculation;secondly,a two-stage multi-objective two-stage decentralised wind power siting and capacity allocation and reactive voltage optimisation control model is constructed to take account of the network loss correction,and the multi-objective multi-planning model is established in the first stage to consider the whole-life cycle investment cost of WTGs,the system operating cost and the voltage quality of power supply,and the multi-objective planning model is established in the second stage.planning model,and the second stage further develops the reactive voltage control strategy of WTGs on this basis,and obtains the distribution network loss reduction method based on WTG siting and capacity allocation and reactive power control strategy.Finally,the optimal configuration scheme is solved by the manta ray foraging optimisation(MRFO)algorithm,and the loss of each branch line and bus loss of the distribution network before and after the adoption of this loss reduction method is calculated by taking the IEEE33 distribution system as an example,which verifies the practicability and validity of the proposed method,and provides a reference introduction for decision-making for the distributed energy planning of the distribution network.展开更多
The China Fusion Engineering Test Reactor plans to build a 200 k V/25 A acceleration grid power supply(AGPS)for the negative-ion-based neutral beam injector prototype system.The AGPS uses a rectifier-inverter-isolated...The China Fusion Engineering Test Reactor plans to build a 200 k V/25 A acceleration grid power supply(AGPS)for the negative-ion-based neutral beam injector prototype system.The AGPS uses a rectifier-inverter-isolated step-up structure.There is a DC bus between the rectifier and the inverter.In order to limit DC bus voltage ripple and transient fluctuations,a large number of capacitors are used,which degrades the reliability of the power supply and occupies a large amount of space.This work finds that due to the difference in the turn-off time of the rectifier and the inverter,the capacitance mainly depends on the rectifier current when the inverter is turned off.On this basis,an active power filter(APF)scheme is proposed to absorb the current.To enhance the dynamic response ability of the APF,model predictive control is adopted.In this paper,the circuit structure of the APF is introduced,the prediction model is deduced,the corresponding control strategy and signal detection method are proposed,and the simulation and experimental results show that APF can track the transient current of the DC bus and reduce the voltage fluctuation significantly.展开更多
There is a danger of power generation efficiency decreasing due to voltage increase when clustered residential PV systems are grid-interconnected to a single distribution line. As a countermeasure, installation of the...There is a danger of power generation efficiency decreasing due to voltage increase when clustered residential PV systems are grid-interconnected to a single distribution line. As a countermeasure, installation of the reactive power control of an inverter at each residence has been considered. However, there are not many types of inverters that can operate reactive power control because there are insufficient effects on a low voltage distribution line with low penetration PV with reactive power control. Therefore, it is necessary to consider how to increase generation efficiency with a lower number of inverters. In this paper, four Japanese standard distribution line structures, for example of a residential area on "C1", where 2,160 residential PV systems are grid-interconnected, are selected. The optimal setting of reactive power control at each residence is computed on the distribution lines with a greedy method.展开更多
Reactive power control can control voltage within the proper range from the power network side or from the distribution generation (PV (photovoltaic)) side. Reactive power control from the power network side is si...Reactive power control can control voltage within the proper range from the power network side or from the distribution generation (PV (photovoltaic)) side. Reactive power control from the power network side is simpler because little controlled object apparatus, such as STATCOM, is required. However, it is difficult to optimize the individual voltages of residential consumers because few data have been obtained by the power network side as compared with the power generation side. Energy loss at each residence with PV is different due to the difference in the grid-interconnection condition, such as distribution line impedance when the same operating voltage is set at all residences. Therefore, in this paper, the authors propose an advanced reactive power control method for residential PV systems in order to optimally control the voltage at individual residences so as to minimize energy loss fluctuation. The effectiveness of the proposed reactive power control is demonstrated by numerical simulation.展开更多
The acceleration grid power supply(AGPS)rated 200 kV/25 A is a key component devoted to supply the acceleration grids of the China fusion engineering test reactor negative-ion-based neutral beam injector(N-NBI)prototy...The acceleration grid power supply(AGPS)rated 200 kV/25 A is a key component devoted to supply the acceleration grids of the China fusion engineering test reactor negative-ion-based neutral beam injector(N-NBI)prototype system.This paper focused on the design and control of the AGPS conversion system(AGPS-CS),with emphasis on the requirement of the wide range output voltage and rise time.A voltage regulation switch at the front of step-down transformer is applied to optimize the grid current and DC-link voltage.Moreover,a new feedforward control strategy with piecewise PI compensator is proposed to improve the characteristics of AGPS.The simulation results of the proposed AGPS-CS are presented,proving the performance of the power supply to achieve the desired requirements.展开更多
Half-wavelength transmission can transmit large-scale renewable energy over very long distances.This paper proposes an improved steady-state voltage-control method for half-wavelength transmission systems considering ...Half-wavelength transmission can transmit large-scale renewable energy over very long distances.This paper proposes an improved steady-state voltage-control method for half-wavelength transmission systems considering largescale wind-power transmission.First,the unique voltage characteristics of half-wavelength lines are deduced based on the distributed parameter model.In the secondary voltage-control level,reactive power-transmission limits of half-wavelength lines are introduced as another control objective except for tracing the pilot bus voltage reference.Considering the uncertainty and fluctuation of wind power,the overvoltage risk-assessment method of half-wavelength lines is presented to determine specific voltage-control strategies.Simulation results demonstrate that the proposed voltage-control method delivers superior tracking performance according to a voltage reference value and prevents the overvoltage risk of halfwavelength lines effectively in different wind-power penetrations.展开更多
For economical reasons, wind turbine systems must be located in favourable sites generating a higher pro- ductivity. These are often located in areas with weak electric grid infrastructures. The constraints related to...For economical reasons, wind turbine systems must be located in favourable sites generating a higher pro- ductivity. These are often located in areas with weak electric grid infrastructures. The constraints related to this type of grids limit the penetration levels of wind energy. These constraints are mainly related to power quality in the grid as well as the economical aspects of the project. In this study, we take into account the slow voltage variations and the flicker phenomenon. The models used are based on the development of a set of relations derived from engineering knowledge related to both technical and economical points of view. The maximal penetration level of a fixed speed wind turbine system is determined for a given grid. The power control has been investigated to improve wind turbine system integration. Obtained results show the necessity to adapt technological choices to the requirements of weaker grids. Penetration levels and wind turbine cost may be greatly improved using variable speed systems.展开更多
This paper studies the reactive power and voltage coordinated control scheme. According to the characteristics of Hunan power grid, the coordinated schemes about Hunan power grid with Central China Power Grid, as well...This paper studies the reactive power and voltage coordinated control scheme. According to the characteristics of Hunan power grid, the coordinated schemes about Hunan power grid with Central China Power Grid, as well as Changsha power grid are proposed. At the same time, this paper builds a two-way interactive and multiple dispatching reactive power and voltage coordinated control mode, and can be successfully applied in Hunan power grid. The operation results show that this control scheme fulfills the ability of large power grids in optimal allocating of resources, effectively integrates the reactive power resources of the entire grid, achieves the purpose of reducing power grid loss, improving voltage quality, reducing the operating numbers of the reactive power equipment.展开更多
The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easi...The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easily calculate the power factor,and Voltage controller in the microcontroller to determine whether input the compensation capacitance according to the size of power factor,the paper also analyzes the principle of capacitance compensation and calculation method. Dynamic compensation for the entire process is quick and accurate.展开更多
Through a third⁃order mathematical model of grid⁃oriented LCL⁃type converters,this paper analyzes the complicated dynamic characteristics and resonance problems which may influence the system stability.To realize acti...Through a third⁃order mathematical model of grid⁃oriented LCL⁃type converters,this paper analyzes the complicated dynamic characteristics and resonance problems which may influence the system stability.To realize active damping for LCL filters and improve dynamic performance of current regulators,a state space current PI controller is proposed whose parameters can be tuned based on the polynomial equations approach.An extended state observer is integrated with the regulation scheme,where additional sensors are not necessary in contrast with conventional active damping strategies.Synchronous reference frame PLL(SRF⁃PLL)equipped with filter technology is proposed for grid voltage disturbance suppression.This method is then applied to establish a double⁃closed⁃loop power regulator that demonstrates improved performance compared with other controllers.The simulation results are displayed to illustrate the efficiency of the regulation methods.展开更多
The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive co...The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive control(MPC)for the renewable energy power plants of wind and solar power connected to a weak sending-end power grid(WSPG).Wind turbine generators(WTGs),photovoltaic arrays(PVAs),and a static synchronous compensator are coordinated to maintain voltage within a feasible range during operation.This results in the full use of the reactive power capability of WTGs and PVAs.In addition,the impact of the active power outputs of WTGs and PVAs on voltage control are considered because of the high R/X ratio of a collector system.An analytical method is used for calculating sensitivity coefficients to improve computation efficiency.A renewable energy power plant with 80 WTGs and 20 PVAs connected to a WSPG is used to verify the proposed voltage control strategy.Case studies show that the coordinated voltage control strategy can achieve good voltage control performance,which improves the voltage quality of the entire power plant.展开更多
This paper presents the use of fuzzy logic technique to control the reactive power of load and hence improve the source power factor. A shunt compensator is proposed, which consists of a voltage controlled reactor by ...This paper presents the use of fuzzy logic technique to control the reactive power of load and hence improve the source power factor. A shunt compensator is proposed, which consists of a voltage controlled reactor by full-wave thyristor bridge in parallel with a capacitor. The proposed voltage control technique composed of two independent fuzzy controllers, primary and secondary. The PFC (primary fuzzy controller) is designed based on linearization method to introduce to the network the nearest value of reactive power (VAR) required to correct the power factor. The SFC (secondary fuzzy controller) is designed to achieve accurate compensation for the required VAR to achieve the pre-set power factor value. Simulations for 15 different practical study cases are presented to evaluate the performance of the controller, and the results show how the designed controller is fast and accurate. Harmonics analyses are carried out up to the 13th harmonic to determine the requirement of harmonics filter.展开更多
Integration of Solar Photovoltaic (PV) generation into an existing distribution system has many impacts on the system, with the power flow being one of the major issues. This impact is not generic for any network, but...Integration of Solar Photovoltaic (PV) generation into an existing distribution system has many impacts on the system, with the power flow being one of the major issues. This impact is not generic for any network, but it may manifest itself either positively or negatively, depending on the grid configuration, interface control modes, operation mode, and load profile. Grid-connected PV systems have three control options of the local voltage controller of the interface DC-AC converter. These control modes are Power Factor control, voltage control, and Droop Voltage control. This paper aims at evaluating and comparing the impacts of those control modes on the grid power flow. A set of evaluation criteria and indices is defined and mathematically formulated. Based on the requirements of the used program (Power Factory Dig Silent V14.1.3), a computation plan (algorithm) has been proposed. The algorithm has been applied to a typical weak network and a wide range of simulations has been carried out. Simulation results have been thoroughly discussed and important findings have been concluded.展开更多
With integration of large-scale renewable energy,new controllable devices,and required reinforcement of power grids,modern power systems have typical characteristics such as uncertainty,vulnerability and openness,whic...With integration of large-scale renewable energy,new controllable devices,and required reinforcement of power grids,modern power systems have typical characteristics such as uncertainty,vulnerability and openness,which makes operation and control of power grids face severe security challenges.Application of artificial intelligence(AI)technologies represented by machine learning in power grid regulation is limited by reliability,interpretability and generalization ability of complex modeling.Mode of hybrid-augmented intelligence(HAI)based on human-machine collaboration(HMC)is a pivotal direction for future development of AI technology in this field.Based on characteristics of applications in power grid regulation,this paper discusses system architecture and key technologies of human-machine hybrid-augmented intelligence(HHI)system for large-scale power grid dispatching and control(PGDC).First,theory and application scenarios of HHI are introduced and analyzed;then physical and functional architectures of HHI system and human-machine collaborative regulation process are proposed.Key technologies are discussed to achieve a thorough integration of human/machine intelligence.Finally,state-of-theart and future development of HHI in power grid regulation are summarized,aiming to efficiently improve the intelligent level of power grid regulation in a human-machine interactive and collaborative way.展开更多
In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is rel...In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is relatively simple. Thus, connecting large-capacity wind power units complicates the peak load regulation and stable operation of the power grids in these regions. Most wind turbines use power electronic converter technology, which affects the safety and stability of the power grid differently compared with conventional synchronous generators. Furthermore, fluctuations in wind power cause fluctuations in the output of wind farms, making it difficult to create and implement suitable power generation plans for wind farms. The generation technology and grid connection scheme for wind power and conventional thermal power generation differ considerably. Moreover, the active and reactive power control abilities of wind turbines are weaker than those of thermal power units, necessitating additional equipment to control wind turbines. Hence, to address the aforementioned issues with large-scale wind power generation, this study analyzes the differences between the grid connection and collection strategies for wind power bases and thermal power plants. Based on this analysis, the differences in the power control modes of wind power and thermal power are further investigated. Finally, the stability of different control modes is analyzed through simulation. The findings can be beneficial for the planning and development of large-scale wind power generation farms.展开更多
During this decade,many countries have experienced natural and accidental disasters,such as typhoons,floods,earthquakes,and nuclear plant accidents,causing catastrophic damage to infrastructures.Since the end of 2019,...During this decade,many countries have experienced natural and accidental disasters,such as typhoons,floods,earthquakes,and nuclear plant accidents,causing catastrophic damage to infrastructures.Since the end of 2019,all countries of the world are struggling with the COVID-19 and pursuing countermeasures,including inoculation of vaccine,and changes in our lifestyle and social structures.All these experiences have made the residents in the affected regions keenly aware of the need for new infrastructures that are resilient and autonomous,so that vital lifelines are secured during calamities.A paradigm shift has been taking place toward reorganizing the energy social service management in many countries,including Japan,by effective use of sustainable energy and new supply schemes.However,such new power sources and supply schemes would affect the power grid through intermittency of power output and the deterioration of power quality and service.Therefore,new social infrastructures and novel management systems to supply energy and social service will be required.In this paper,user-friendly design,operation and control assist tools for resilient microgrids and autonomous communities are proposed and applied to the standard microgrid to verify its effectiveness and performance.展开更多
We present an electrical grid optimization method for economical benefit. After simplifying an IEEE feeder diagram, we build a compact smart grid system including a photovoltaic-inverter system, a shunt capacitor, an ...We present an electrical grid optimization method for economical benefit. After simplifying an IEEE feeder diagram, we build a compact smart grid system including a photovoltaic-inverter system, a shunt capacitor, an on-load tapchanger(OLTC) and transmission lines. The system power factor(PF) regulation and reactive power dispatching are indispensable to improve power quality. Our control method uses predictive weather and load data to decide engaging or tripping the shunt capacitor, or reactive power injection by the photovoltaic-inverter system, ultimately to keep the system PF in a good range. From the perspective of economics, the economical model is considered as a decision maker in our predictive data control method.Capacitor-only control strategy is a common photovoltaic(PV)regulation method, which is treated as a baseline case. Simulations with GridLAB-D on profiled loads and residential loads have been carried out. The comparison results with baseline control strategy and our predictive data control method show the appreciable economical benefit of our method.展开更多
For demonstrating a multiterminal voltage-source converter(VSC)-based high-voltage DC(HVDC)(VSCHVDC) project, this study puts forward a technical route for calculating the power flow in a 500-kV VSC-HVDC power grid in...For demonstrating a multiterminal voltage-source converter(VSC)-based high-voltage DC(HVDC)(VSCHVDC) project, this study puts forward a technical route for calculating the power flow in a 500-kV VSC-HVDC power grid in comparison with that of an AC power grid. The Jacobian matrix used in the power-flow calculation was deduced through methods such as Newton–Laphson iteration and Taylor series expansion. Further, the operation effect of powerflow calculation on a true bipolar VSC-HVDC power grid was analyzed briefly. The elements of the Jacobian matrix corresponding to VSC were studied under the mode of droop control and the control strategy of VSC-HVDC power grid was analyzed in detail. The power-flow calculation model for VSC-HVDC power grid of the master–slave control mode was simplified using the PQ decomposition method of the power-flow calculation of an AC power grid. Moreover, a four-terminal model of the Zhangbei VSC-HVDC demonstration project was established and tested on MATLAB. The simulation results under two kinds of operating conditions were analyzed and compared to the results of BPA; the deviation between the power-flow results was studied. The results show that the proposed calculation method can provide a feasible support for calculating the power flow in VSC-HVDC grids.展开更多
基金supported by the National Natural Science Foundation of China(52177081).
文摘In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is proposed in the paper,which takes into account the network loss correction for the extreme cold region.Firstly,an electro-thermal model is introduced to reflect the effect of temperature on conductor resistance and to correct the results of active network loss calculation;secondly,a two-stage multi-objective two-stage decentralised wind power siting and capacity allocation and reactive voltage optimisation control model is constructed to take account of the network loss correction,and the multi-objective multi-planning model is established in the first stage to consider the whole-life cycle investment cost of WTGs,the system operating cost and the voltage quality of power supply,and the multi-objective planning model is established in the second stage.planning model,and the second stage further develops the reactive voltage control strategy of WTGs on this basis,and obtains the distribution network loss reduction method based on WTG siting and capacity allocation and reactive power control strategy.Finally,the optimal configuration scheme is solved by the manta ray foraging optimisation(MRFO)algorithm,and the loss of each branch line and bus loss of the distribution network before and after the adoption of this loss reduction method is calculated by taking the IEEE33 distribution system as an example,which verifies the practicability and validity of the proposed method,and provides a reference introduction for decision-making for the distributed energy planning of the distribution network.
基金supported in part by the National Key Research and Development Program of China(No.2017YFE0300104)in part by National Natural Science Foundation of China(No.51821005)。
文摘The China Fusion Engineering Test Reactor plans to build a 200 k V/25 A acceleration grid power supply(AGPS)for the negative-ion-based neutral beam injector prototype system.The AGPS uses a rectifier-inverter-isolated step-up structure.There is a DC bus between the rectifier and the inverter.In order to limit DC bus voltage ripple and transient fluctuations,a large number of capacitors are used,which degrades the reliability of the power supply and occupies a large amount of space.This work finds that due to the difference in the turn-off time of the rectifier and the inverter,the capacitance mainly depends on the rectifier current when the inverter is turned off.On this basis,an active power filter(APF)scheme is proposed to absorb the current.To enhance the dynamic response ability of the APF,model predictive control is adopted.In this paper,the circuit structure of the APF is introduced,the prediction model is deduced,the corresponding control strategy and signal detection method are proposed,and the simulation and experimental results show that APF can track the transient current of the DC bus and reduce the voltage fluctuation significantly.
文摘There is a danger of power generation efficiency decreasing due to voltage increase when clustered residential PV systems are grid-interconnected to a single distribution line. As a countermeasure, installation of the reactive power control of an inverter at each residence has been considered. However, there are not many types of inverters that can operate reactive power control because there are insufficient effects on a low voltage distribution line with low penetration PV with reactive power control. Therefore, it is necessary to consider how to increase generation efficiency with a lower number of inverters. In this paper, four Japanese standard distribution line structures, for example of a residential area on "C1", where 2,160 residential PV systems are grid-interconnected, are selected. The optimal setting of reactive power control at each residence is computed on the distribution lines with a greedy method.
文摘Reactive power control can control voltage within the proper range from the power network side or from the distribution generation (PV (photovoltaic)) side. Reactive power control from the power network side is simpler because little controlled object apparatus, such as STATCOM, is required. However, it is difficult to optimize the individual voltages of residential consumers because few data have been obtained by the power network side as compared with the power generation side. Energy loss at each residence with PV is different due to the difference in the grid-interconnection condition, such as distribution line impedance when the same operating voltage is set at all residences. Therefore, in this paper, the authors propose an advanced reactive power control method for residential PV systems in order to optimally control the voltage at individual residences so as to minimize energy loss fluctuation. The effectiveness of the proposed reactive power control is demonstrated by numerical simulation.
基金This work is supported by the National Key R&D Program of China under Grant No.2017YFE0300104National Natural Science Foundation of China(Nos.51707073 and 51821005).
文摘The acceleration grid power supply(AGPS)rated 200 kV/25 A is a key component devoted to supply the acceleration grids of the China fusion engineering test reactor negative-ion-based neutral beam injector(N-NBI)prototype system.This paper focused on the design and control of the AGPS conversion system(AGPS-CS),with emphasis on the requirement of the wide range output voltage and rise time.A voltage regulation switch at the front of step-down transformer is applied to optimize the grid current and DC-link voltage.Moreover,a new feedforward control strategy with piecewise PI compensator is proposed to improve the characteristics of AGPS.The simulation results of the proposed AGPS-CS are presented,proving the performance of the power supply to achieve the desired requirements.
基金supported by State Grid Corporation of China,Projects under Grant 520626200031National Natural Science Foundation of China,No.51877200。
文摘Half-wavelength transmission can transmit large-scale renewable energy over very long distances.This paper proposes an improved steady-state voltage-control method for half-wavelength transmission systems considering largescale wind-power transmission.First,the unique voltage characteristics of half-wavelength lines are deduced based on the distributed parameter model.In the secondary voltage-control level,reactive power-transmission limits of half-wavelength lines are introduced as another control objective except for tracing the pilot bus voltage reference.Considering the uncertainty and fluctuation of wind power,the overvoltage risk-assessment method of half-wavelength lines is presented to determine specific voltage-control strategies.Simulation results demonstrate that the proposed voltage-control method delivers superior tracking performance according to a voltage reference value and prevents the overvoltage risk of halfwavelength lines effectively in different wind-power penetrations.
文摘For economical reasons, wind turbine systems must be located in favourable sites generating a higher pro- ductivity. These are often located in areas with weak electric grid infrastructures. The constraints related to this type of grids limit the penetration levels of wind energy. These constraints are mainly related to power quality in the grid as well as the economical aspects of the project. In this study, we take into account the slow voltage variations and the flicker phenomenon. The models used are based on the development of a set of relations derived from engineering knowledge related to both technical and economical points of view. The maximal penetration level of a fixed speed wind turbine system is determined for a given grid. The power control has been investigated to improve wind turbine system integration. Obtained results show the necessity to adapt technological choices to the requirements of weaker grids. Penetration levels and wind turbine cost may be greatly improved using variable speed systems.
文摘This paper studies the reactive power and voltage coordinated control scheme. According to the characteristics of Hunan power grid, the coordinated schemes about Hunan power grid with Central China Power Grid, as well as Changsha power grid are proposed. At the same time, this paper builds a two-way interactive and multiple dispatching reactive power and voltage coordinated control mode, and can be successfully applied in Hunan power grid. The operation results show that this control scheme fulfills the ability of large power grids in optimal allocating of resources, effectively integrates the reactive power resources of the entire grid, achieves the purpose of reducing power grid loss, improving voltage quality, reducing the operating numbers of the reactive power equipment.
文摘The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easily calculate the power factor,and Voltage controller in the microcontroller to determine whether input the compensation capacitance according to the size of power factor,the paper also analyzes the principle of capacitance compensation and calculation method. Dynamic compensation for the entire process is quick and accurate.
文摘Through a third⁃order mathematical model of grid⁃oriented LCL⁃type converters,this paper analyzes the complicated dynamic characteristics and resonance problems which may influence the system stability.To realize active damping for LCL filters and improve dynamic performance of current regulators,a state space current PI controller is proposed whose parameters can be tuned based on the polynomial equations approach.An extended state observer is integrated with the regulation scheme,where additional sensors are not necessary in contrast with conventional active damping strategies.Synchronous reference frame PLL(SRF⁃PLL)equipped with filter technology is proposed for grid voltage disturbance suppression.This method is then applied to establish a double⁃closed⁃loop power regulator that demonstrates improved performance compared with other controllers.The simulation results are displayed to illustrate the efficiency of the regulation methods.
基金supported by National Natural Science Foundation Joint Key Project of China(2016YFB0900900).
文摘The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive control(MPC)for the renewable energy power plants of wind and solar power connected to a weak sending-end power grid(WSPG).Wind turbine generators(WTGs),photovoltaic arrays(PVAs),and a static synchronous compensator are coordinated to maintain voltage within a feasible range during operation.This results in the full use of the reactive power capability of WTGs and PVAs.In addition,the impact of the active power outputs of WTGs and PVAs on voltage control are considered because of the high R/X ratio of a collector system.An analytical method is used for calculating sensitivity coefficients to improve computation efficiency.A renewable energy power plant with 80 WTGs and 20 PVAs connected to a WSPG is used to verify the proposed voltage control strategy.Case studies show that the coordinated voltage control strategy can achieve good voltage control performance,which improves the voltage quality of the entire power plant.
文摘This paper presents the use of fuzzy logic technique to control the reactive power of load and hence improve the source power factor. A shunt compensator is proposed, which consists of a voltage controlled reactor by full-wave thyristor bridge in parallel with a capacitor. The proposed voltage control technique composed of two independent fuzzy controllers, primary and secondary. The PFC (primary fuzzy controller) is designed based on linearization method to introduce to the network the nearest value of reactive power (VAR) required to correct the power factor. The SFC (secondary fuzzy controller) is designed to achieve accurate compensation for the required VAR to achieve the pre-set power factor value. Simulations for 15 different practical study cases are presented to evaluate the performance of the controller, and the results show how the designed controller is fast and accurate. Harmonics analyses are carried out up to the 13th harmonic to determine the requirement of harmonics filter.
文摘Integration of Solar Photovoltaic (PV) generation into an existing distribution system has many impacts on the system, with the power flow being one of the major issues. This impact is not generic for any network, but it may manifest itself either positively or negatively, depending on the grid configuration, interface control modes, operation mode, and load profile. Grid-connected PV systems have three control options of the local voltage controller of the interface DC-AC converter. These control modes are Power Factor control, voltage control, and Droop Voltage control. This paper aims at evaluating and comparing the impacts of those control modes on the grid power flow. A set of evaluation criteria and indices is defined and mathematically formulated. Based on the requirements of the used program (Power Factory Dig Silent V14.1.3), a computation plan (algorithm) has been proposed. The algorithm has been applied to a typical weak network and a wide range of simulations has been carried out. Simulation results have been thoroughly discussed and important findings have been concluded.
基金supported by the National Key R&D Program of China(2018AAA0101500).
文摘With integration of large-scale renewable energy,new controllable devices,and required reinforcement of power grids,modern power systems have typical characteristics such as uncertainty,vulnerability and openness,which makes operation and control of power grids face severe security challenges.Application of artificial intelligence(AI)technologies represented by machine learning in power grid regulation is limited by reliability,interpretability and generalization ability of complex modeling.Mode of hybrid-augmented intelligence(HAI)based on human-machine collaboration(HMC)is a pivotal direction for future development of AI technology in this field.Based on characteristics of applications in power grid regulation,this paper discusses system architecture and key technologies of human-machine hybrid-augmented intelligence(HHI)system for large-scale power grid dispatching and control(PGDC).First,theory and application scenarios of HHI are introduced and analyzed;then physical and functional architectures of HHI system and human-machine collaborative regulation process are proposed.Key technologies are discussed to achieve a thorough integration of human/machine intelligence.Finally,state-of-theart and future development of HHI in power grid regulation are summarized,aiming to efficiently improve the intelligent level of power grid regulation in a human-machine interactive and collaborative way.
基金This work was supported by National Key Research and Development Program of China(2018YFB0904000).
文摘In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is relatively simple. Thus, connecting large-capacity wind power units complicates the peak load regulation and stable operation of the power grids in these regions. Most wind turbines use power electronic converter technology, which affects the safety and stability of the power grid differently compared with conventional synchronous generators. Furthermore, fluctuations in wind power cause fluctuations in the output of wind farms, making it difficult to create and implement suitable power generation plans for wind farms. The generation technology and grid connection scheme for wind power and conventional thermal power generation differ considerably. Moreover, the active and reactive power control abilities of wind turbines are weaker than those of thermal power units, necessitating additional equipment to control wind turbines. Hence, to address the aforementioned issues with large-scale wind power generation, this study analyzes the differences between the grid connection and collection strategies for wind power bases and thermal power plants. Based on this analysis, the differences in the power control modes of wind power and thermal power are further investigated. Finally, the stability of different control modes is analyzed through simulation. The findings can be beneficial for the planning and development of large-scale wind power generation farms.
文摘During this decade,many countries have experienced natural and accidental disasters,such as typhoons,floods,earthquakes,and nuclear plant accidents,causing catastrophic damage to infrastructures.Since the end of 2019,all countries of the world are struggling with the COVID-19 and pursuing countermeasures,including inoculation of vaccine,and changes in our lifestyle and social structures.All these experiences have made the residents in the affected regions keenly aware of the need for new infrastructures that are resilient and autonomous,so that vital lifelines are secured during calamities.A paradigm shift has been taking place toward reorganizing the energy social service management in many countries,including Japan,by effective use of sustainable energy and new supply schemes.However,such new power sources and supply schemes would affect the power grid through intermittency of power output and the deterioration of power quality and service.Therefore,new social infrastructures and novel management systems to supply energy and social service will be required.In this paper,user-friendly design,operation and control assist tools for resilient microgrids and autonomous communities are proposed and applied to the standard microgrid to verify its effectiveness and performance.
文摘We present an electrical grid optimization method for economical benefit. After simplifying an IEEE feeder diagram, we build a compact smart grid system including a photovoltaic-inverter system, a shunt capacitor, an on-load tapchanger(OLTC) and transmission lines. The system power factor(PF) regulation and reactive power dispatching are indispensable to improve power quality. Our control method uses predictive weather and load data to decide engaging or tripping the shunt capacitor, or reactive power injection by the photovoltaic-inverter system, ultimately to keep the system PF in a good range. From the perspective of economics, the economical model is considered as a decision maker in our predictive data control method.Capacitor-only control strategy is a common photovoltaic(PV)regulation method, which is treated as a baseline case. Simulations with GridLAB-D on profiled loads and residential loads have been carried out. The comparison results with baseline control strategy and our predictive data control method show the appreciable economical benefit of our method.
基金supported by the State Grid Corporation of China Headquarter technology project (52010118000K)
文摘For demonstrating a multiterminal voltage-source converter(VSC)-based high-voltage DC(HVDC)(VSCHVDC) project, this study puts forward a technical route for calculating the power flow in a 500-kV VSC-HVDC power grid in comparison with that of an AC power grid. The Jacobian matrix used in the power-flow calculation was deduced through methods such as Newton–Laphson iteration and Taylor series expansion. Further, the operation effect of powerflow calculation on a true bipolar VSC-HVDC power grid was analyzed briefly. The elements of the Jacobian matrix corresponding to VSC were studied under the mode of droop control and the control strategy of VSC-HVDC power grid was analyzed in detail. The power-flow calculation model for VSC-HVDC power grid of the master–slave control mode was simplified using the PQ decomposition method of the power-flow calculation of an AC power grid. Moreover, a four-terminal model of the Zhangbei VSC-HVDC demonstration project was established and tested on MATLAB. The simulation results under two kinds of operating conditions were analyzed and compared to the results of BPA; the deviation between the power-flow results was studied. The results show that the proposed calculation method can provide a feasible support for calculating the power flow in VSC-HVDC grids.