This paper presents a pooled-neighbor swarm intelligence approach (PNSIA) to optimal reactive power dispatch and voltage control of power systems. The proposed approach uses more particles’ information to control the...This paper presents a pooled-neighbor swarm intelligence approach (PNSIA) to optimal reactive power dispatch and voltage control of power systems. The proposed approach uses more particles’ information to control the mutation operation. The proposed PNSIA algorithm is also extended to handle mixed variables, such as transformer taps and reactive power source in- stallation, using a simple scheme. PNSIA applied for optimal power system reactive power dispatch is evaluated on an IEEE 30-bus power system and a practical 118-bus power system in which the control of bus voltages, tap position of transformers and reactive power sources are involved to minimize the transmission loss of the power system. Simulation results showed that the proposed approach is superior to current methods for finding the optimal solution, in terms of both solution quality and algorithm robustness.展开更多
Photovoltaic(PV)power generation has highly penetrated in distribution networks,providing clean and sustainable energy.However,its uncertain and intermittent power outputs significantly impair network operation,leadin...Photovoltaic(PV)power generation has highly penetrated in distribution networks,providing clean and sustainable energy.However,its uncertain and intermittent power outputs significantly impair network operation,leading to unexpected power loss and voltage fluctuation.To address the uncertainties,this paper proposes a multi-timescale affinely adjustable robust reactive power dispatch(MTAAR-RPD)method to reduce the network power losses as well as alleviate voltage deviations and fluctuations.The MTAAR-RPD aims to coordinate on-load tap changers(OLTCs),capacitor banks(CBs),and PV inverters through a three-stage structure which covers multiple timescales of“hour-minute-second”.The first stage schedules CBs and OLTCs hourly while the second stage dispatches the base reactive power outputs of PV inverter every 15 min.The third stage affinely adjusts the inverter reactive power output based on an optimized Q-P droop controller in real time.The three stages are coordinately optimized by an affinely adjustable robust optimization method.A solution algorithm based on a cutting plane algorithm is developed to solve the optimization problem effectively.The proposed method is verified through theoretical analysis and numerical simulations.展开更多
The implementation of developing the wind power is an important way to achieve the low-carbon power system.However,the voltage stability issues caused by the random fluctuations of active power output and the irration...The implementation of developing the wind power is an important way to achieve the low-carbon power system.However,the voltage stability issues caused by the random fluctuations of active power output and the irrational regulations of reactive power compensation equipment have become the prominent problems of the regions where large-scale wind power integrated.In view of these problems,this paper proposed an optimal reactive power dispatch(ORPD)strategy of wind power plants cluster(WPPC)considering static voltage stability for lowcarbon power system.The control model of the ORPD strategy was built according to the wind power prediction,the present operation information and the historical operation information.By utilizing the automatic voltage control capability of wind power plants and central substations,the ORPD strategy can achieve differentiated management between the discrete devices and the dynamic devices of the WPPC.Simulation results of an actual WPPC in North China show that the ORPD strategy can improve the voltage control performance of the pilot nodes and coordinate the operation between discrete devices and the dynamic devices,thus maintaining the static voltage stability as well.展开更多
This paper presents the mean–variance(MV)model to solve power system reactive power dispatch problems with wind power integrated.The MV model considers the profit and risk simultaneously under the uncertain wind powe...This paper presents the mean–variance(MV)model to solve power system reactive power dispatch problems with wind power integrated.The MV model considers the profit and risk simultaneously under the uncertain wind power(speed)environment.To describe this uncertain environment,the Latin hypercube sampling with Cholesky decomposition simulation method is used to sample uncertain wind speeds.An improved optimization algorithm,group search optimizer with intraspecific competition and le´vy walk,is then used to optimize the MV model by introducing the risk tolerance parameter.The simulation is conducted based on the IEEE 30-bus power system,and the results demonstrate the effectiveness and validity of the proposed model and the optimization algorithm.展开更多
The uncertainties from renewable energy sources(RESs)will not only introduce significant influences to active power dispatch,but also bring great challenges to the analysis of optimal reactive power dispatch(ORPD).To ...The uncertainties from renewable energy sources(RESs)will not only introduce significant influences to active power dispatch,but also bring great challenges to the analysis of optimal reactive power dispatch(ORPD).To address the influence of high penetration of RES integrated into active distribution networks,a distributionally robust chance constraint(DRCC)-based ORPD model considering discrete reactive power compensators is proposed in this paper.The proposed ORPD model combines a second-order cone programming(SOCP)-based model at the nominal operation mode and a linear power flow(LPF)model to reflect the system response under certainties.Then,a distributionally robust optimization(WDRO)method with Wasserstein distance is utilized to solve the proposed DRCC-based ORPD model.The WDRO method is data-driven due to the reason that the ambiguity set is constructed by the available historical data without any assumption on the specific probability distribution of the uncertainties.And the more data is available,the smaller the ambiguity would be.Numerical results on IEEE 30-bus and 123-bus systems and comparisons with the other three-benchmark approaches demonstrate the accuracy and effectiveness of the proposed model and method.展开更多
This paper explores the capability of modified differential evolution (MDE) technique for solving the reactive power dispatch (RPD) problem. The proposed method is based on the basic differential evolution (DE) ...This paper explores the capability of modified differential evolution (MDE) technique for solving the reactive power dispatch (RPD) problem. The proposed method is based on the basic differential evolution (DE) technique with a few modifications made into it. DE is one of the strongest optimization techniques though it suffers from the problem of slow convergence while global minima appear. The proposed modifications ate tried to resolve the problem. The RPD problem mainly defines loss minimization with stable voltage profile. To solve the RPD problem, the generator bus voltage, transformer tap setting and shunt capacitor placements are controlled by the MDE approach. In this paper, IEEE 14-bus and IEEE 30-bus systems are chosen for MDE implementation. The applied modification show much improved result in comparison to normal DE technique. Comparative study with other softcomputing technique including DE validates the effectiveness of the proposed method.展开更多
基金Project supported by the National Natural Science Foundation ofChina (No. 60421002) and the Outstanding Young Research Inves-tigator Fund (No. 60225006), China
文摘This paper presents a pooled-neighbor swarm intelligence approach (PNSIA) to optimal reactive power dispatch and voltage control of power systems. The proposed approach uses more particles’ information to control the mutation operation. The proposed PNSIA algorithm is also extended to handle mixed variables, such as transformer taps and reactive power source in- stallation, using a simple scheme. PNSIA applied for optimal power system reactive power dispatch is evaluated on an IEEE 30-bus power system and a practical 118-bus power system in which the control of bus voltages, tap position of transformers and reactive power sources are involved to minimize the transmission loss of the power system. Simulation results showed that the proposed approach is superior to current methods for finding the optimal solution, in terms of both solution quality and algorithm robustness.
基金supported in part by the Scientific Research Foundation of Nanjing University of Science and Technology(No.AE89991/255)in part by Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment Project,Southeast University+1 种基金in part by the National Natural Science Foundation of China(No.51677025)in part by the Science and Technology Project of State Grid Corporation(No.SGMD0000YXJS1900502)。
文摘Photovoltaic(PV)power generation has highly penetrated in distribution networks,providing clean and sustainable energy.However,its uncertain and intermittent power outputs significantly impair network operation,leading to unexpected power loss and voltage fluctuation.To address the uncertainties,this paper proposes a multi-timescale affinely adjustable robust reactive power dispatch(MTAAR-RPD)method to reduce the network power losses as well as alleviate voltage deviations and fluctuations.The MTAAR-RPD aims to coordinate on-load tap changers(OLTCs),capacitor banks(CBs),and PV inverters through a three-stage structure which covers multiple timescales of“hour-minute-second”.The first stage schedules CBs and OLTCs hourly while the second stage dispatches the base reactive power outputs of PV inverter every 15 min.The third stage affinely adjusts the inverter reactive power output based on an optimized Q-P droop controller in real time.The three stages are coordinately optimized by an affinely adjustable robust optimization method.A solution algorithm based on a cutting plane algorithm is developed to solve the optimization problem effectively.The proposed method is verified through theoretical analysis and numerical simulations.
基金This work was supported by the National Natural Science Foundation of China(No.51207145)the Science and Technology Project of State Grid Corporation of China(No.NY71-14-035).
文摘The implementation of developing the wind power is an important way to achieve the low-carbon power system.However,the voltage stability issues caused by the random fluctuations of active power output and the irrational regulations of reactive power compensation equipment have become the prominent problems of the regions where large-scale wind power integrated.In view of these problems,this paper proposed an optimal reactive power dispatch(ORPD)strategy of wind power plants cluster(WPPC)considering static voltage stability for lowcarbon power system.The control model of the ORPD strategy was built according to the wind power prediction,the present operation information and the historical operation information.By utilizing the automatic voltage control capability of wind power plants and central substations,the ORPD strategy can achieve differentiated management between the discrete devices and the dynamic devices of the WPPC.Simulation results of an actual WPPC in North China show that the ORPD strategy can improve the voltage control performance of the pilot nodes and coordinate the operation between discrete devices and the dynamic devices,thus maintaining the static voltage stability as well.
基金The work is funded by Guangdong Innovative Research Team Program(No.201001N0104744201)National Key Basic Research and Development Program(973 Program,No.2012CB215100),ChinaThe first author thanks for the financial support from China Scholarship Council Program(No.201306150070).
文摘This paper presents the mean–variance(MV)model to solve power system reactive power dispatch problems with wind power integrated.The MV model considers the profit and risk simultaneously under the uncertain wind power(speed)environment.To describe this uncertain environment,the Latin hypercube sampling with Cholesky decomposition simulation method is used to sample uncertain wind speeds.An improved optimization algorithm,group search optimizer with intraspecific competition and le´vy walk,is then used to optimize the MV model by introducing the risk tolerance parameter.The simulation is conducted based on the IEEE 30-bus power system,and the results demonstrate the effectiveness and validity of the proposed model and the optimization algorithm.
基金supported in part by National Key Research and Development Program of China(No.2018YFB0905000)in part by Key Research and Development Program of Shaanxi(No.2017ZDCXL-GY-02-03)。
文摘The uncertainties from renewable energy sources(RESs)will not only introduce significant influences to active power dispatch,but also bring great challenges to the analysis of optimal reactive power dispatch(ORPD).To address the influence of high penetration of RES integrated into active distribution networks,a distributionally robust chance constraint(DRCC)-based ORPD model considering discrete reactive power compensators is proposed in this paper.The proposed ORPD model combines a second-order cone programming(SOCP)-based model at the nominal operation mode and a linear power flow(LPF)model to reflect the system response under certainties.Then,a distributionally robust optimization(WDRO)method with Wasserstein distance is utilized to solve the proposed DRCC-based ORPD model.The WDRO method is data-driven due to the reason that the ambiguity set is constructed by the available historical data without any assumption on the specific probability distribution of the uncertainties.And the more data is available,the smaller the ambiguity would be.Numerical results on IEEE 30-bus and 123-bus systems and comparisons with the other three-benchmark approaches demonstrate the accuracy and effectiveness of the proposed model and method.
文摘This paper explores the capability of modified differential evolution (MDE) technique for solving the reactive power dispatch (RPD) problem. The proposed method is based on the basic differential evolution (DE) technique with a few modifications made into it. DE is one of the strongest optimization techniques though it suffers from the problem of slow convergence while global minima appear. The proposed modifications ate tried to resolve the problem. The RPD problem mainly defines loss minimization with stable voltage profile. To solve the RPD problem, the generator bus voltage, transformer tap setting and shunt capacitor placements are controlled by the MDE approach. In this paper, IEEE 14-bus and IEEE 30-bus systems are chosen for MDE implementation. The applied modification show much improved result in comparison to normal DE technique. Comparative study with other softcomputing technique including DE validates the effectiveness of the proposed method.