In a deregulated Var market, market power issue is more serious than in an energy market since reactive power cannot be transmitted over long distances. This letter designs a multi-timescale Var market framework, wher...In a deregulated Var market, market power issue is more serious than in an energy market since reactive power cannot be transmitted over long distances. This letter designs a multi-timescale Var market framework, where market power that may arise in the hourly-ahead Var support service market due to system configuration deficiency and market structure flaws can be eliminated by day-ahead contract-based Var reserve service market. Settlement of day-ahead Var reserve contract is formulated as a two-stage robust optimization (TSRO) model considering worst case of uncertainty realization and potential market power that may arise in hourly-ahead market. TSRO with integer recourses is then solved by a new column and constraint generation algorithm. Results show a robust Var reserve contract can fully eliminate market power, and prevent suppliers from manipulating market prices.展开更多
文摘In a deregulated Var market, market power issue is more serious than in an energy market since reactive power cannot be transmitted over long distances. This letter designs a multi-timescale Var market framework, where market power that may arise in the hourly-ahead Var support service market due to system configuration deficiency and market structure flaws can be eliminated by day-ahead contract-based Var reserve service market. Settlement of day-ahead Var reserve contract is formulated as a two-stage robust optimization (TSRO) model considering worst case of uncertainty realization and potential market power that may arise in hourly-ahead market. TSRO with integer recourses is then solved by a new column and constraint generation algorithm. Results show a robust Var reserve contract can fully eliminate market power, and prevent suppliers from manipulating market prices.