0.96(K_(0.5)Na_(0.5-z)Li_(z))(Nb_(0.92)Sb_(0.08))O_(3)-0.04(Ca_(0.5)Sr_(0.5))ZrO_(3)[(KN_(0.5-z)L_(z))NS-CSZ]piezoceramics(0≤z≤0.04)were aligned in the[001]orientation using 3%(in mole)NaNbO_(3)templates with a larg...0.96(K_(0.5)Na_(0.5-z)Li_(z))(Nb_(0.92)Sb_(0.08))O_(3)-0.04(Ca_(0.5)Sr_(0.5))ZrO_(3)[(KN_(0.5-z)L_(z))NS-CSZ]piezoceramics(0≤z≤0.04)were aligned in the[001]orientation using 3%(in mole)NaNbO_(3)templates with a large Lotgering factor(>97%).Their crystal structures transformed from the orthorhombic-pseudocubic(O-P)structure to the orthorhombic-tetragonal-pseudocubic(O-T-P)structure with an increasing z.The P structure was interpreted as a rhombohedral R3m structure.The piezoelectricity of the compositions increased after[001]-texturing,and the enhancement was proportional to the O phase quantity.The composition(z=0.03)exhibited the highest piezoelectric constant(d_(33);670 pC/N)and electromechanical coupling factor(k_(p);0.56).Piezoelectric energy harvesters were produced using the untextured and textured samples(z=0.03).The textured harvester delivered a large power density of 26.6 mW/mm^(3),which was larger than that of the untextured harvester owing to the enhanced kp and d_(33)×g_(33) of the textured piezoceramic.A multilayer actuator was produced using the textured sample(z=0.03),and it exhibited a large acceleration(44.2 G)and displacement(±3,730 mm)at±25 V.Therefore,the[001]-textured(KN_(0.47)L_(0.03))NS-CSZ piezoceramic is suitable for piezoelectric energy harvesters and actuators.展开更多
BiFeGaO3-BaTiO3(BFG-BT)based ceramics with a large piezoelectric coefficient are potential high performance lead-free piezoelectric compounds.In this work,textured and random BFG-BT ceramics were realized by the solid...BiFeGaO3-BaTiO3(BFG-BT)based ceramics with a large piezoelectric coefficient are potential high performance lead-free piezoelectric compounds.In this work,textured and random BFG-BT ceramics were realized by the solid state reaction method with and without BaTiO3(BT)templates.Textured ceramics were obtained by a reactive templated grain growth(RTGG)method leading to a high-temperature electromechanical strain of S=0.27%at 40 kV/cm and to an effective piezoelectric coefficient(d33*)up to 685 pm/V at 180℃.The easy movement of oriented domains enhanced the electromechanical strain under an applied electric field in textured sample(Lotgering factor f=66.3%).Structural investigations reveal that the proportion and degree of distortion of BFG-BT rhombohedral phase(R3c)reached its maximum in textured ceramics,resulting in large ferrodistortive displacements under electric fields.In addition,the dense nanodomains with low domain wall energies,inferred from the high-resolution transmission electron microscope(HR-TEM)observations,contribute to the extra displacement of the textured sample under an applied electric field.In textured ceramics,the remnant polarization was stable(about 17μC/cm2)from room temperature to 180℃,contributing to the stable ferroelectric property at high temperatures.Through the introduction of BT templates,high-density nanodomains were formed and the Burns temperature was enhanced in textured ceramics.The electromechanical strain,polarization and dielectric behavior were correlated to the textured or random forms of the BFG-BT based ceramics.展开更多
基金supported by a National Research Foundation(NRF)of Korea grant funded by the Korean government(MSIT)(No.RS-2023-00254689).
文摘0.96(K_(0.5)Na_(0.5-z)Li_(z))(Nb_(0.92)Sb_(0.08))O_(3)-0.04(Ca_(0.5)Sr_(0.5))ZrO_(3)[(KN_(0.5-z)L_(z))NS-CSZ]piezoceramics(0≤z≤0.04)were aligned in the[001]orientation using 3%(in mole)NaNbO_(3)templates with a large Lotgering factor(>97%).Their crystal structures transformed from the orthorhombic-pseudocubic(O-P)structure to the orthorhombic-tetragonal-pseudocubic(O-T-P)structure with an increasing z.The P structure was interpreted as a rhombohedral R3m structure.The piezoelectricity of the compositions increased after[001]-texturing,and the enhancement was proportional to the O phase quantity.The composition(z=0.03)exhibited the highest piezoelectric constant(d_(33);670 pC/N)and electromechanical coupling factor(k_(p);0.56).Piezoelectric energy harvesters were produced using the untextured and textured samples(z=0.03).The textured harvester delivered a large power density of 26.6 mW/mm^(3),which was larger than that of the untextured harvester owing to the enhanced kp and d_(33)×g_(33) of the textured piezoceramic.A multilayer actuator was produced using the textured sample(z=0.03),and it exhibited a large acceleration(44.2 G)and displacement(±3,730 mm)at±25 V.Therefore,the[001]-textured(KN_(0.47)L_(0.03))NS-CSZ piezoceramic is suitable for piezoelectric energy harvesters and actuators.
基金financially supported by the National Key R&D Program of China(Nos.2016YFB0402701 and 2016YFA0201103)the National Basic Research Program of China(No.2015CB654605)+1 种基金the National Natural Science Foundation of China(Nos.51831010 and 51672293)the Instrument Developing Project of Chinese Academy of Sciences(No.ZDKYYQ20180004)。
文摘BiFeGaO3-BaTiO3(BFG-BT)based ceramics with a large piezoelectric coefficient are potential high performance lead-free piezoelectric compounds.In this work,textured and random BFG-BT ceramics were realized by the solid state reaction method with and without BaTiO3(BT)templates.Textured ceramics were obtained by a reactive templated grain growth(RTGG)method leading to a high-temperature electromechanical strain of S=0.27%at 40 kV/cm and to an effective piezoelectric coefficient(d33*)up to 685 pm/V at 180℃.The easy movement of oriented domains enhanced the electromechanical strain under an applied electric field in textured sample(Lotgering factor f=66.3%).Structural investigations reveal that the proportion and degree of distortion of BFG-BT rhombohedral phase(R3c)reached its maximum in textured ceramics,resulting in large ferrodistortive displacements under electric fields.In addition,the dense nanodomains with low domain wall energies,inferred from the high-resolution transmission electron microscope(HR-TEM)observations,contribute to the extra displacement of the textured sample under an applied electric field.In textured ceramics,the remnant polarization was stable(about 17μC/cm2)from room temperature to 180℃,contributing to the stable ferroelectric property at high temperatures.Through the introduction of BT templates,high-density nanodomains were formed and the Burns temperature was enhanced in textured ceramics.The electromechanical strain,polarization and dielectric behavior were correlated to the textured or random forms of the BFG-BT based ceramics.