Background:Biogenic volatile organic compounds(BVOCs)play an essential role in tropospheric atmospheric chemical reactions.There are few studies conducted on BVOCs emission of dominant forest species in the Jing-Jin-J...Background:Biogenic volatile organic compounds(BVOCs)play an essential role in tropospheric atmospheric chemical reactions.There are few studies conducted on BVOCs emission of dominant forest species in the Jing-Jin-Ji area of China.Based on the field survey,forest resources data and the measured standard emission factors,the Guenther model developed in 1993(G93)was applied in this paper to estimate the emission of BVOCs from several dominant forest species(Platycladus orientalis,Quercus variabilis,Betula platyphylla,Populus tomentosa,Pinus tabuliformis,Robinia pseudoacacia,Ulmus pumila,Salix babylonica and Larix gmelinii)in the Jing-Jin-Ji area in 2017.Then the spatiotemporal emission characteristics and atmospheric chemical reactivity of these species were extensively evaluated.Results:The results showed that the total annual BVOCs emission was estimated to be 70.8 Gg C·year^(−1),consisting 40.5%(28.7 Gg C·year^(−1))of isoprene,36.0%(25.5 Gg C·year^(−1))of monoterpenes and 23.4%(16.6 Gg C·year^(−1))of other VOCs.The emissions from Platycladus orientalis,Quercus variabilis,Populus tomentosa and Pinus tabulaeformis contributed 56.1%,41.2%,36.0% and 31.1%,respectively.The total BVOCs emission from the Jing-Jin-Ji area accounted for 61.9% and 1.8%in summer and winter,respectively.Up to 28.8% of emission was detected from Chengde followed by Beijing with 24.9%,that mainly distributed in the Taihang Mountains and the Yanshan Mountains.Additionally,the Robinia pseudoacacia,Populus tomentosa,Quercus variabilis,and Pinus tabulaeformis contributed mainly to BVOCs reaction activity.Conclusions:The BVOCs emission peaked in summer(June,July,and August)and bottomed out in winter(December,January,and February).Chengde contributed the most,followed by Beijing.Platycladus orientalis,Quercus variabilis,Populus tomentosa,Pinus tabulaeformis and Robinia pseudoacacia represent the primary contributors to BVOCs emission and atmospheric reactivity,hence the planting of these species should be reduced.展开更多
The oxygen-containing compounds in Fischer Tropsch synthetic oil greatly affect the downstream deep processing of hydrocarbons,and effective removal is required.Com-pared to traditional removal technologies such as hy...The oxygen-containing compounds in Fischer Tropsch synthetic oil greatly affect the downstream deep processing of hydrocarbons,and effective removal is required.Com-pared to traditional removal technologies such as hydrogenation deoxygenation,solvent extraction,and extraction distillation,adsorption deoxygenation technology has the advantages of low cost,mild operating conditions,easy removal and recovery,and mini-mal impact on oil quality.Therefore,adsorption deoxygenation technology has devel-oped rapidly in various removal processes and has become a research hotspot in the cur-rent Fischer Tropsch oil deoxygenation.Adsorbents are the core of adsorption deoxygen-ation technology.Therefore,this article briefly introduces the adsorption mechanism and summarizes the research progress of adsorbents widely used in recent years,such as silica gel,alumina,molecular sieves,and metal organic frameworks,in adsorbing oxygen-containing compounds in Fischer Tropsch synthetic oils.And provide reference sugges-tions for further adsorption and deoxygenation directions in the future.展开更多
A survey was conducted of the volatile organic compounds(VOCs)released from sources of solvent use,industry activities and vehicle emissions in Guiyang,a capital city of China.Samples were collected by canisters and a...A survey was conducted of the volatile organic compounds(VOCs)released from sources of solvent use,industry activities and vehicle emissions in Guiyang,a capital city of China.Samples were collected by canisters and analyzed by GC-MS-FID.The species profiles of VOCs emitted from sources were obtained.Results showed that xylenes,ethylbenzene,acetone and dichloromethane were the characteristics species for painting,2-propanol and ethyl acetate for printing,α-pinene for solid wood furniture manufacturing,and 2-butanone for biscuit baking.These characteristics species could be as tracers for the sources respectively.In most of samples from the solvent use,the benzene/toluene(B/T)ratio was less than 0.3,indicating that the ratio could be as the indicator for tracing the solvent use related sources.The results also suggested that the toluene/xylene(T/X)ratio be as the indicator to distinguish the VOCs sources of painting(<2)from the printing(>2).Aromatics contributed the most to ozone formation potential(OFP)of most painting and non-paper printing sources,and oxygen-containing VOCs(OVOCs)were major species contributing to OFP of the sources from food production and paper printing.The OFP of the VOCs emissions from vehicle in tunnels and from other manufactures were dominated by both aromatics and alkenes.Theα-pinene could explain 56.94%and 32.54%of total OFP of the VOCs sources from filing cabinet and solid wood furniture manufacturing,which was rarely been involved in previous studies of VOCs source profiles,indicating that the species of concern for VOCs sources are still insufficient at present.展开更多
The adsorption behavior ofp-aminobenzoic acid and o-aminobenzoic acid onto the different polymeric adsorbents was systematically investigated as a function of the solution concentration and temperature. Experimental r...The adsorption behavior ofp-aminobenzoic acid and o-aminobenzoic acid onto the different polymeric adsorbents was systematically investigated as a function of the solution concentration and temperature. Experimental results indicated that the equilibrium adsorption data of the four polymeric adsorbents fitted well in the Freundlich isotherm. The adsorption capacity of multi-functional polymeric adsorbent NJ-99 was the highest, which might be attributed to the strong hydrogen-bonding interaction between the amino groups on the resin and the carboxyl group of aminobenzoic acid. The adsorption capacity of o-aminobenzoic acid onto any adsorbent was higher than p-aminobenzoic acid. Thermodynamic studies suggested the exothermic, spontaneous physical adsorption process. Adsorption kinetics results showed that the adsorption followed the pseudo-second-order kinetics model and the intraparticle mass transfer process was the rate-controlling step.展开更多
Adsorption equilibrium isotherms of phenolic compounds, phenol, p cresol, p chlorophenol and p nitrophenol, from aqueous solutions by Amberlite XAD 4 polymeric adsorbent and its acetylized derivative M...Adsorption equilibrium isotherms of phenolic compounds, phenol, p cresol, p chlorophenol and p nitrophenol, from aqueous solutions by Amberlite XAD 4 polymeric adsorbent and its acetylized derivative MX 4 within temperature range of 283 323K were obtained and fitted to the Freundlich isotherms. The capacities of equilibrium adsorption for all four phenolic compounds from their aqueous solutions increased around 20% on the acetylized resin, which may be contributed to the specific surface area and the partial polarity on the network. Estimations of the isosteric enthalpy, free energy, and entropy for the adsorption process were reported.展开更多
Two hypercrosslinked polymeric adsorbents (ZH-01 and Amberlite XAD-4 resin) were employed to remove three kinds of phenolic compounds including phenol, 4-nitrophenol and 2,4-dinitrophenol from aqueous solutions. The...Two hypercrosslinked polymeric adsorbents (ZH-01 and Amberlite XAD-4 resin) were employed to remove three kinds of phenolic compounds including phenol, 4-nitrophenol and 2,4-dinitrophenol from aqueous solutions. The study was focused on the static equilibrium adsorption behavior, the column dynamic adsorption and desorption profiles. The Freundlich model gave a perfect fitting to the isotherm data. The adsorbing capacities for these three compounds on ZH-01 were higher than those on Amberlite XAD-4 within the temperature range 288-318 K, which was attributed to the large micropore area and 2-carboxybenzoyl functional groups on the network of ZH-01 resin. The adsorption for phenol and 4- nitrophenol on ZH-01 was a physical adsorption process, while for 2,4-dinitrophenol it was a coexistence process of physical adsorption and chemisorption's transitions. The column test showed the advantages of ZH-01 in the dynamic adsorption processes of phenolic compounds. Being used as the desorption reagent, sodium hydroxide solution showed an excellent performance.展开更多
Equilibrium data for the adsorption of phenolic compounds, i.e., phenol, p-cresol, p-chlorophenol and p- nitrophenol from aqueous solutions by a water-compatible hypercrosslinked polymeric adsorbent (NJ-8) within temp...Equilibrium data for the adsorption of phenolic compounds, i.e., phenol, p-cresol, p-chlorophenol and p- nitrophenol from aqueous solutions by a water-compatible hypercrosslinked polymeric adsorbent (NJ-8) within temperature range of 283-323 K were obtained and correlated with a Freundlich-type of isotherm equation, so that equilibrium constants KF and n were obtained. The capacities of equilibrium adsorption for all the four phenolic compounds on the NJ-8 from aqueous solutions are around 2 times as high as those of Amberlite XAD-4, which may be attributed to the unusual micropore structure and the partial polarity on the network. The values of the enthalpy (always negative) are indicative of an exothermic process, which manifests the adsorption of all the four phenolic compounds on the two polymeric adsorbents to be a process of physical adsorption. The negative values of free energy change show that the solute is more concentrated on the adsorbent than in the bulk solution. The absolute free energy values of adsorption for NJ-8 are always higher than those for Amberlite XAD-4, which indicates that phenolic compounds are preferentially adsorbed on NJ-8. The negative values of the adsorption entropy are consistent with the restricted mobilities of adsorbed molecules of phenolic compounds as compared with the molecules in solution. The adsorption entropy values of phenolic compounds for NJ-8 are lower than those for Amberlite XAD-4, which means the micropores of NJ-8 require more orderly arranged adsorbate.展开更多
The relationships between the structure of oxime compounds(R^(1)R^(2)C=NOH,R^(1)/R^(2)=alkyl groups) with different substituents and their corresponding flotation performances were studied. The analyses of density fun...The relationships between the structure of oxime compounds(R^(1)R^(2)C=NOH,R^(1)/R^(2)=alkyl groups) with different substituents and their corresponding flotation performances were studied. The analyses of density functional theory(DFT) calculations illustrated that the introduced phenyl group at the R^(1) position could enhance the acidity,while the heptyl group could effectively increase the hydrophobicity and benefit van der Waals interactions. Meanwhile,the introduced amino group at the R^(2) position could provide cationic sites to interact with negatively charged surfaces of minerals, while the introduced hydroxyl group could provide additional action sites to form stable chelates with metal ions. Based on the structure-activity relationships, structural optimization was carried out to obtain three efficient collectors, which possessed superior flotation separation performances, proving the effectiveness of the structural modification to oxime compounds in this work.展开更多
A sensor based on the technique of a piezoelectric quartz crystal microbalance (QCM) is analyzed for the detection of six organic volatile compounds with high olive oil sensory significance, such as hexanal, acetic ac...A sensor based on the technique of a piezoelectric quartz crystal microbalance (QCM) is analyzed for the detection of six organic volatile compounds with high olive oil sensory significance, such as hexanal, acetic acid, Z-3-hexenyl acetate, undecane, 1-octen-3-ol and 2-butanone. Four sample concentrations have been exposed to each QCM sensor constructed. The detection system is based on the sample adsorption on the forty sensing films coated at the surfaces of forty AT-cut gold-coated quartz crystals. Each sensing film has been prepared with different solution concentrations of ten materials, usually used as chromatographic sta-tionary phases. Sensing film coating process shows excellent repeatability, with coefficient values less than 0.50%. The frequency shifts of the piezoelectric crystals due to the adsorption of the volatile compounds have been measured as sensor responses, using a static measurement system. The results show that only five QCM sensors, with high sensitivity values, are enough to the detection of the volatile compounds studied. Therefore, the developed detection system presented herein provides a rapid identification of organic volatile compounds with elevated olive oil sensory connotation and it could be a substitute technique to the analytical methods normally used for the analysis of the olive oil flavor.展开更多
Sulfur-containing compounds(SCCs)must be removed from fuels before use.In this study,a novel non-noble metal Fe single-atom adsorbent(SA-Fe/CN)was synthesized using a core-shell strategy and applied for the adsorptive...Sulfur-containing compounds(SCCs)must be removed from fuels before use.In this study,a novel non-noble metal Fe single-atom adsorbent(SA-Fe/CN)was synthesized using a core-shell strategy and applied for the adsorptive removal of benzothiophene(BT)and dibenzothiophene(DBT).The adsorption isotherms,thermodynamics,kinetics,and adsorption-regeneration cycles of DBT and BT on SA-Fe/CN were studied.SA-Fe/CN exhibited a significant capacity to adsorb DBT,and the isothermal equilibrium was well described by the Langmuir isotherm.The Gibbs free energy values were negative(ΔG^(0)<0),indicating that the adsorption of DBT and BT was favored and spontaneous.The adsorption process conformed to the pseudo-second-order kinetic model with high R^(2) values(0.9994,0.9987).The adsorption capacity of SA-Fe/CN for DBT and BT reached 163.21 mg/g and 90.35 mg/g,respectively,due to the highly active sites of the single atom and electrostatic interaction with the sulfide.Therefore,SA-Fe/CN may be a promising adsorbent for SCC removal.展开更多
This article represents the main positions of the theory of pleiotropic action of biologically active compounds (BACs) and medicines, which has been designed by the author based on her own experimental researches. The...This article represents the main positions of the theory of pleiotropic action of biologically active compounds (BACs) and medicines, which has been designed by the author based on her own experimental researches. The term “pleiotropy” means the ability of the BACs and medicines to implement more than one mechanism of action resulting in the specific biological (pharmacological) effect. The interaction of these mechanisms forms a distinct pattern of biological response (pleiotropic pattern), which reflects the change in his character with the increased dose (concentration)-dependent efficacy of BACs and medicines. The article consists of description of different pleiotropic patterns established in experiments on the model of reactive oxygen species (ROS) generation by macrophages dependent on activity of specialized enzyme called Nox2-NAD(P)H oxidase (Nox2, EC 1.6.3.1). Moreover, it consists of explanation of pharmacodynamic nature of pleiotropic patterns by means of application Chou-Talalay median effect equalization and combination index (CI) theory. The novel theory explains unsolved until now universal aspects of activity BACs and medicines, such as slope angles of “dose-effect” dependences in the conditions relevant in vivo, and it is of fundamental interest. However, it has applications in experimental pharmacology, as it allows defining the choice of the individual compounds and combinations, modulating the trust effect selectively and efficiently. This knowledge opens up new approaches to medicines discovery and evaluation, their rational dosing and combining.展开更多
Iron aluminides exhibit good resistance to high-temperature sulfidizing and oxidizing environments and potential for structural applications at high temperatures under corrosive environments. In this study, Fe-Al inte...Iron aluminides exhibit good resistance to high-temperature sulfidizing and oxidizing environments and potential for structural applications at high temperatures under corrosive environments. In this study, Fe-Al intermetallic compound was prepared by multi-layered roll-bonding of elemental Fe and Al foils. The process consisted of the accumulative roll-bonding (ARE) for making a laminated Fe/Al sheet and the subsequent heat treatment promoting a solid phase reaction in the laminated Fe/Al sheet. The microstructures produced at each processing stage were characterized by optical microscopy and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS). Vickers microhardness testing was used for hardness determination. A homogeneous intermetallic compound of Fe3Al or FeAl could be obtained after the subsequent heat treatment for 1.8 ks at 973 K and for 10.8 ks at 1123 or 1173 K.展开更多
Isopimpinellin(C13H10O5),alternative name 5,8-dimethoxypsoralen,is one of the furocoumarin compounds.This traditional Chinese medicine extract has attracted a great deal of attention in recent years due to its pharmac...Isopimpinellin(C13H10O5),alternative name 5,8-dimethoxypsoralen,is one of the furocoumarin compounds.This traditional Chinese medicine extract has attracted a great deal of attention in recent years due to its pharmacological properties,especially its antifungal effect.The main purpose of this study was to study the molecular structure and chemical reactivity of isopimpinellin using the density functional theory method.To understand and interpret the reactivity of isopimpinellin,various chemical reactivity descriptors such as chemical potential(μ),electronegativity(χ),chemical hardness(η)and electrophilicity(ω)and local reactivity index condensed Fukui function(fi(r))have been calculated with five hybrid functionals PBE1PBE,MPW1PW91,B3LYP,X3LYP and B3PW91.These chemical reactivity descriptors indicate that the isopimpinellin molecule has a good antioxidant activity,which could be one of the reasons for its action as an effective antifungal drug.The condensed Fukui functions of isopimpinellin molecule provide a complete scheme of chemical reactivity of one molecule.展开更多
基金supported by the grants from National Natural Science Foundation of China(No.42077454)National Research Program for Key Issues in Air Pollution Control(DQGG202126)National Natural Science Foundation of China(No.41605077).
文摘Background:Biogenic volatile organic compounds(BVOCs)play an essential role in tropospheric atmospheric chemical reactions.There are few studies conducted on BVOCs emission of dominant forest species in the Jing-Jin-Ji area of China.Based on the field survey,forest resources data and the measured standard emission factors,the Guenther model developed in 1993(G93)was applied in this paper to estimate the emission of BVOCs from several dominant forest species(Platycladus orientalis,Quercus variabilis,Betula platyphylla,Populus tomentosa,Pinus tabuliformis,Robinia pseudoacacia,Ulmus pumila,Salix babylonica and Larix gmelinii)in the Jing-Jin-Ji area in 2017.Then the spatiotemporal emission characteristics and atmospheric chemical reactivity of these species were extensively evaluated.Results:The results showed that the total annual BVOCs emission was estimated to be 70.8 Gg C·year^(−1),consisting 40.5%(28.7 Gg C·year^(−1))of isoprene,36.0%(25.5 Gg C·year^(−1))of monoterpenes and 23.4%(16.6 Gg C·year^(−1))of other VOCs.The emissions from Platycladus orientalis,Quercus variabilis,Populus tomentosa and Pinus tabulaeformis contributed 56.1%,41.2%,36.0% and 31.1%,respectively.The total BVOCs emission from the Jing-Jin-Ji area accounted for 61.9% and 1.8%in summer and winter,respectively.Up to 28.8% of emission was detected from Chengde followed by Beijing with 24.9%,that mainly distributed in the Taihang Mountains and the Yanshan Mountains.Additionally,the Robinia pseudoacacia,Populus tomentosa,Quercus variabilis,and Pinus tabulaeformis contributed mainly to BVOCs reaction activity.Conclusions:The BVOCs emission peaked in summer(June,July,and August)and bottomed out in winter(December,January,and February).Chengde contributed the most,followed by Beijing.Platycladus orientalis,Quercus variabilis,Populus tomentosa,Pinus tabulaeformis and Robinia pseudoacacia represent the primary contributors to BVOCs emission and atmospheric reactivity,hence the planting of these species should be reduced.
文摘The oxygen-containing compounds in Fischer Tropsch synthetic oil greatly affect the downstream deep processing of hydrocarbons,and effective removal is required.Com-pared to traditional removal technologies such as hydrogenation deoxygenation,solvent extraction,and extraction distillation,adsorption deoxygenation technology has the advantages of low cost,mild operating conditions,easy removal and recovery,and mini-mal impact on oil quality.Therefore,adsorption deoxygenation technology has devel-oped rapidly in various removal processes and has become a research hotspot in the cur-rent Fischer Tropsch oil deoxygenation.Adsorbents are the core of adsorption deoxygen-ation technology.Therefore,this article briefly introduces the adsorption mechanism and summarizes the research progress of adsorbents widely used in recent years,such as silica gel,alumina,molecular sieves,and metal organic frameworks,in adsorbing oxygen-containing compounds in Fischer Tropsch synthetic oils.And provide reference sugges-tions for further adsorption and deoxygenation directions in the future.
基金the Guiyang Research Academy of Eco-Environmental Science for partial support of this project。
文摘A survey was conducted of the volatile organic compounds(VOCs)released from sources of solvent use,industry activities and vehicle emissions in Guiyang,a capital city of China.Samples were collected by canisters and analyzed by GC-MS-FID.The species profiles of VOCs emitted from sources were obtained.Results showed that xylenes,ethylbenzene,acetone and dichloromethane were the characteristics species for painting,2-propanol and ethyl acetate for printing,α-pinene for solid wood furniture manufacturing,and 2-butanone for biscuit baking.These characteristics species could be as tracers for the sources respectively.In most of samples from the solvent use,the benzene/toluene(B/T)ratio was less than 0.3,indicating that the ratio could be as the indicator for tracing the solvent use related sources.The results also suggested that the toluene/xylene(T/X)ratio be as the indicator to distinguish the VOCs sources of painting(<2)from the printing(>2).Aromatics contributed the most to ozone formation potential(OFP)of most painting and non-paper printing sources,and oxygen-containing VOCs(OVOCs)were major species contributing to OFP of the sources from food production and paper printing.The OFP of the VOCs emissions from vehicle in tunnels and from other manufactures were dominated by both aromatics and alkenes.Theα-pinene could explain 56.94%and 32.54%of total OFP of the VOCs sources from filing cabinet and solid wood furniture manufacturing,which was rarely been involved in previous studies of VOCs source profiles,indicating that the species of concern for VOCs sources are still insufficient at present.
基金Project supported by the National Key Technology Research and Development Program of China(No.2006BAC02A15)Opening Foundation of Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection of China(No.JLCBE05006)the Qinglan Project of Jiangsu Province
文摘The adsorption behavior ofp-aminobenzoic acid and o-aminobenzoic acid onto the different polymeric adsorbents was systematically investigated as a function of the solution concentration and temperature. Experimental results indicated that the equilibrium adsorption data of the four polymeric adsorbents fitted well in the Freundlich isotherm. The adsorption capacity of multi-functional polymeric adsorbent NJ-99 was the highest, which might be attributed to the strong hydrogen-bonding interaction between the amino groups on the resin and the carboxyl group of aminobenzoic acid. The adsorption capacity of o-aminobenzoic acid onto any adsorbent was higher than p-aminobenzoic acid. Thermodynamic studies suggested the exothermic, spontaneous physical adsorption process. Adsorption kinetics results showed that the adsorption followed the pseudo-second-order kinetics model and the intraparticle mass transfer process was the rate-controlling step.
文摘Adsorption equilibrium isotherms of phenolic compounds, phenol, p cresol, p chlorophenol and p nitrophenol, from aqueous solutions by Amberlite XAD 4 polymeric adsorbent and its acetylized derivative MX 4 within temperature range of 283 323K were obtained and fitted to the Freundlich isotherms. The capacities of equilibrium adsorption for all four phenolic compounds from their aqueous solutions increased around 20% on the acetylized resin, which may be contributed to the specific surface area and the partial polarity on the network. Estimations of the isosteric enthalpy, free energy, and entropy for the adsorption process were reported.
基金supported by the Educational Bureau of Jiangsu Province,China(No.08KJD150020)Jiangsu Provincial Key Laboratory of Coastal Wetland Bio-resources and Environmental Protection(No.JLCBE09011)the Professorial and Doctor Funds of Yancheng Teachers College(No.09YSYJB0202)
文摘Two hypercrosslinked polymeric adsorbents (ZH-01 and Amberlite XAD-4 resin) were employed to remove three kinds of phenolic compounds including phenol, 4-nitrophenol and 2,4-dinitrophenol from aqueous solutions. The study was focused on the static equilibrium adsorption behavior, the column dynamic adsorption and desorption profiles. The Freundlich model gave a perfect fitting to the isotherm data. The adsorbing capacities for these three compounds on ZH-01 were higher than those on Amberlite XAD-4 within the temperature range 288-318 K, which was attributed to the large micropore area and 2-carboxybenzoyl functional groups on the network of ZH-01 resin. The adsorption for phenol and 4- nitrophenol on ZH-01 was a physical adsorption process, while for 2,4-dinitrophenol it was a coexistence process of physical adsorption and chemisorption's transitions. The column test showed the advantages of ZH-01 in the dynamic adsorption processes of phenolic compounds. Being used as the desorption reagent, sodium hydroxide solution showed an excellent performance.
基金This work was financially supported by the National Natural Science Foundation of China (Grant No. 20274017) and theScience & Technology Council of Jiangsu province, China (Grant No. BK2000016)
文摘Equilibrium data for the adsorption of phenolic compounds, i.e., phenol, p-cresol, p-chlorophenol and p- nitrophenol from aqueous solutions by a water-compatible hypercrosslinked polymeric adsorbent (NJ-8) within temperature range of 283-323 K were obtained and correlated with a Freundlich-type of isotherm equation, so that equilibrium constants KF and n were obtained. The capacities of equilibrium adsorption for all the four phenolic compounds on the NJ-8 from aqueous solutions are around 2 times as high as those of Amberlite XAD-4, which may be attributed to the unusual micropore structure and the partial polarity on the network. The values of the enthalpy (always negative) are indicative of an exothermic process, which manifests the adsorption of all the four phenolic compounds on the two polymeric adsorbents to be a process of physical adsorption. The negative values of free energy change show that the solute is more concentrated on the adsorbent than in the bulk solution. The absolute free energy values of adsorption for NJ-8 are always higher than those for Amberlite XAD-4, which indicates that phenolic compounds are preferentially adsorbed on NJ-8. The negative values of the adsorption entropy are consistent with the restricted mobilities of adsorbed molecules of phenolic compounds as compared with the molecules in solution. The adsorption entropy values of phenolic compounds for NJ-8 are lower than those for Amberlite XAD-4, which means the micropores of NJ-8 require more orderly arranged adsorbate.
基金the support of the National Natural Science Foundation of China(Nos.51774329 and 51904337)the High Performance Computing Center of Central South University,China。
文摘The relationships between the structure of oxime compounds(R^(1)R^(2)C=NOH,R^(1)/R^(2)=alkyl groups) with different substituents and their corresponding flotation performances were studied. The analyses of density functional theory(DFT) calculations illustrated that the introduced phenyl group at the R^(1) position could enhance the acidity,while the heptyl group could effectively increase the hydrophobicity and benefit van der Waals interactions. Meanwhile,the introduced amino group at the R^(2) position could provide cationic sites to interact with negatively charged surfaces of minerals, while the introduced hydroxyl group could provide additional action sites to form stable chelates with metal ions. Based on the structure-activity relationships, structural optimization was carried out to obtain three efficient collectors, which possessed superior flotation separation performances, proving the effectiveness of the structural modification to oxime compounds in this work.
文摘A sensor based on the technique of a piezoelectric quartz crystal microbalance (QCM) is analyzed for the detection of six organic volatile compounds with high olive oil sensory significance, such as hexanal, acetic acid, Z-3-hexenyl acetate, undecane, 1-octen-3-ol and 2-butanone. Four sample concentrations have been exposed to each QCM sensor constructed. The detection system is based on the sample adsorption on the forty sensing films coated at the surfaces of forty AT-cut gold-coated quartz crystals. Each sensing film has been prepared with different solution concentrations of ten materials, usually used as chromatographic sta-tionary phases. Sensing film coating process shows excellent repeatability, with coefficient values less than 0.50%. The frequency shifts of the piezoelectric crystals due to the adsorption of the volatile compounds have been measured as sensor responses, using a static measurement system. The results show that only five QCM sensors, with high sensitivity values, are enough to the detection of the volatile compounds studied. Therefore, the developed detection system presented herein provides a rapid identification of organic volatile compounds with elevated olive oil sensory connotation and it could be a substitute technique to the analytical methods normally used for the analysis of the olive oil flavor.
文摘Sulfur-containing compounds(SCCs)must be removed from fuels before use.In this study,a novel non-noble metal Fe single-atom adsorbent(SA-Fe/CN)was synthesized using a core-shell strategy and applied for the adsorptive removal of benzothiophene(BT)and dibenzothiophene(DBT).The adsorption isotherms,thermodynamics,kinetics,and adsorption-regeneration cycles of DBT and BT on SA-Fe/CN were studied.SA-Fe/CN exhibited a significant capacity to adsorb DBT,and the isothermal equilibrium was well described by the Langmuir isotherm.The Gibbs free energy values were negative(ΔG^(0)<0),indicating that the adsorption of DBT and BT was favored and spontaneous.The adsorption process conformed to the pseudo-second-order kinetic model with high R^(2) values(0.9994,0.9987).The adsorption capacity of SA-Fe/CN for DBT and BT reached 163.21 mg/g and 90.35 mg/g,respectively,due to the highly active sites of the single atom and electrostatic interaction with the sulfide.Therefore,SA-Fe/CN may be a promising adsorbent for SCC removal.
文摘This article represents the main positions of the theory of pleiotropic action of biologically active compounds (BACs) and medicines, which has been designed by the author based on her own experimental researches. The term “pleiotropy” means the ability of the BACs and medicines to implement more than one mechanism of action resulting in the specific biological (pharmacological) effect. The interaction of these mechanisms forms a distinct pattern of biological response (pleiotropic pattern), which reflects the change in his character with the increased dose (concentration)-dependent efficacy of BACs and medicines. The article consists of description of different pleiotropic patterns established in experiments on the model of reactive oxygen species (ROS) generation by macrophages dependent on activity of specialized enzyme called Nox2-NAD(P)H oxidase (Nox2, EC 1.6.3.1). Moreover, it consists of explanation of pharmacodynamic nature of pleiotropic patterns by means of application Chou-Talalay median effect equalization and combination index (CI) theory. The novel theory explains unsolved until now universal aspects of activity BACs and medicines, such as slope angles of “dose-effect” dependences in the conditions relevant in vivo, and it is of fundamental interest. However, it has applications in experimental pharmacology, as it allows defining the choice of the individual compounds and combinations, modulating the trust effect selectively and efficiently. This knowledge opens up new approaches to medicines discovery and evaluation, their rational dosing and combining.
文摘Iron aluminides exhibit good resistance to high-temperature sulfidizing and oxidizing environments and potential for structural applications at high temperatures under corrosive environments. In this study, Fe-Al intermetallic compound was prepared by multi-layered roll-bonding of elemental Fe and Al foils. The process consisted of the accumulative roll-bonding (ARE) for making a laminated Fe/Al sheet and the subsequent heat treatment promoting a solid phase reaction in the laminated Fe/Al sheet. The microstructures produced at each processing stage were characterized by optical microscopy and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS). Vickers microhardness testing was used for hardness determination. A homogeneous intermetallic compound of Fe3Al or FeAl could be obtained after the subsequent heat treatment for 1.8 ks at 973 K and for 10.8 ks at 1123 or 1173 K.
文摘Isopimpinellin(C13H10O5),alternative name 5,8-dimethoxypsoralen,is one of the furocoumarin compounds.This traditional Chinese medicine extract has attracted a great deal of attention in recent years due to its pharmacological properties,especially its antifungal effect.The main purpose of this study was to study the molecular structure and chemical reactivity of isopimpinellin using the density functional theory method.To understand and interpret the reactivity of isopimpinellin,various chemical reactivity descriptors such as chemical potential(μ),electronegativity(χ),chemical hardness(η)and electrophilicity(ω)and local reactivity index condensed Fukui function(fi(r))have been calculated with five hybrid functionals PBE1PBE,MPW1PW91,B3LYP,X3LYP and B3PW91.These chemical reactivity descriptors indicate that the isopimpinellin molecule has a good antioxidant activity,which could be one of the reasons for its action as an effective antifungal drug.The condensed Fukui functions of isopimpinellin molecule provide a complete scheme of chemical reactivity of one molecule.