The values of effective breeding coefficient Keff in a reactor core of nuclear power plant are calculated for different values of parameters (core structure, fuel assembly component) by using the Monte Carlo method....The values of effective breeding coefficient Keff in a reactor core of nuclear power plant are calculated for different values of parameters (core structure, fuel assembly component) by using the Monte Carlo method. The obtained values of Keff are compared and analysed, which can provide theoretical basis for reactor design.展开更多
Small long-life transportable high temperature gas-cooled reactors(HTRs) are interesting because they can safely provide electricity or heat in remote areas or to industrial users in developed or developing countries....Small long-life transportable high temperature gas-cooled reactors(HTRs) are interesting because they can safely provide electricity or heat in remote areas or to industrial users in developed or developing countries.This paper presents the neutronic design of the U-Battery,which is a 5 MWth block-type HTR with a fuel lifetime of 5–10 years.Assuming a reactor pressure vessel diameter of less than 3.7 m,some possible reactor core configurations of the 5 MWth U-Battery have been investigated using the TRITON module in SCALE 6.The neutronic analysis shows that Layout 12×2B,a scattering core containing 2 layers of 12 fuel blocks each with 20% enriched235U,reaches a fuel lifetime of 10 effective full power years(EFPYs).When the diameter of the reactor pressure vessel is reduced to 1.8 m,a fuel lifetime of 4 EFPYs will be achieved for the 5 MWth U-Battery with a 25-cm thick graphite side reflector.Layouts 6×3 and 6×4 with a 25-cm thick BeO side reflector achieve a fuel lifetime of 7 and 10 EFPYs,respectively.The comparison of the different core configurations shows that,keeping the number of fuel blocks in the reactor core constant,the annular and scattering core configurations have longer fuel lifetimes and lower fuel cost than the cylindrical ones.Moreover,for the 5 MWth U-Battery,reducing the fuel inventory in the reactor core by decreasing the diameter of fuel kernels and packing fraction of TRISO particles is more effective to lower the fuel cost than decreasing the 235U enrichment.展开更多
This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the...This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the MCNPX code for analysing neutron behavior and the PARET/ANL code for understanding power variations, to get a clearer picture of the reactor’s performance. The analysis covers the initial six years of GHARR-1’s operation and includes projections for its whole 60-year lifespan. We closely observed the patterns of both the highest and average PPFs at 21 axial nodes, with measurements taken every ten years. The findings of this study reveal important patterns in power distribution within the core, which are essential for improving the safety regulations and fuel management techniques of the reactor. We provide a meticulous approach, extensive data, and an analysis of the findings, highlighting the significance of continuous monitoring and analysis for proactive management of nuclear reactors. The findings of this study not only enhance our comprehension of nuclear reactor safety but also carry significant ramifications for sustainable energy progress in Ghana and the wider global context. Nuclear engineering is essential in tackling global concerns, such as the demand for clean and dependable energy sources. Research on optimising nuclear reactors, particularly in terms of safety and efficiency, is crucial for the ongoing advancement and acceptance of nuclear energy.展开更多
This paper presents a coupled magnetic-circuit method for computing the magnetic force of air-core reactor under short-time current. The current and the magnetic flux density are computed first and then the magnetic f...This paper presents a coupled magnetic-circuit method for computing the magnetic force of air-core reactor under short-time current. The current and the magnetic flux density are computed first and then the magnetic force is obtained. Thus, the dynamic stability performance of air-core reactor can be analyzed at the design stage to reduce experimental cost and shorten the lead-time of product development.展开更多
Based on the method of compound and additional conditions under the conditions of the equal temperature rise and the equal potential drop (P.D.) of resistance, the application of design software of dry-type air-core r...Based on the method of compound and additional conditions under the conditions of the equal temperature rise and the equal potential drop (P.D.) of resistance, the application of design software of dry-type air-core reactor is introduced in this thesis. The analytical methods of the inductance are also given. This approach is proved entirely feasible in theory through the simplification with Bartky transformation, and is able to quickly and accurately calculate reactor inductance. This paper presents the analytical methods of the loss of dry-type air-core reactor as well.展开更多
The purpose of the present study is to develop a methodology to evaluate fuel discharge through the CRGT (control-rod guide tube) during CDAs (core-disruptive accidents) of SFRs (sodium-cooled fast reactors), si...The purpose of the present study is to develop a methodology to evaluate fuel discharge through the CRGT (control-rod guide tube) during CDAs (core-disruptive accidents) of SFRs (sodium-cooled fast reactors), since fuel discharge will decrease the core reactivity and CRGTs have a potential to provide an effective discharge path. Fuel discharge contains multi-component fluid dynamics with phase changes, and, in the present study, the SFR safety analysis code SIMMER (Sn, implicit, multifield, multicomponent, Eulerian recriticality) was utilized as a technical basis. First, dominant phenomena affecting fuel discharge through the CRGT are identified based on parametric calculations by the SIMMER code. Next, validations on the code models closely relating to these phenomena were carried out based on experimental data. It was shown that the SIMMER code with some model modifications could reproduce the experimental results appropriately. Through the present study, the evaluation methodology for the molten-fuel discharge through the CRGT was successfully developed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No10647109)
文摘The values of effective breeding coefficient Keff in a reactor core of nuclear power plant are calculated for different values of parameters (core structure, fuel assembly component) by using the Monte Carlo method. The obtained values of Keff are compared and analysed, which can provide theoretical basis for reactor design.
文摘Small long-life transportable high temperature gas-cooled reactors(HTRs) are interesting because they can safely provide electricity or heat in remote areas or to industrial users in developed or developing countries.This paper presents the neutronic design of the U-Battery,which is a 5 MWth block-type HTR with a fuel lifetime of 5–10 years.Assuming a reactor pressure vessel diameter of less than 3.7 m,some possible reactor core configurations of the 5 MWth U-Battery have been investigated using the TRITON module in SCALE 6.The neutronic analysis shows that Layout 12×2B,a scattering core containing 2 layers of 12 fuel blocks each with 20% enriched235U,reaches a fuel lifetime of 10 effective full power years(EFPYs).When the diameter of the reactor pressure vessel is reduced to 1.8 m,a fuel lifetime of 4 EFPYs will be achieved for the 5 MWth U-Battery with a 25-cm thick graphite side reflector.Layouts 6×3 and 6×4 with a 25-cm thick BeO side reflector achieve a fuel lifetime of 7 and 10 EFPYs,respectively.The comparison of the different core configurations shows that,keeping the number of fuel blocks in the reactor core constant,the annular and scattering core configurations have longer fuel lifetimes and lower fuel cost than the cylindrical ones.Moreover,for the 5 MWth U-Battery,reducing the fuel inventory in the reactor core by decreasing the diameter of fuel kernels and packing fraction of TRISO particles is more effective to lower the fuel cost than decreasing the 235U enrichment.
文摘This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the MCNPX code for analysing neutron behavior and the PARET/ANL code for understanding power variations, to get a clearer picture of the reactor’s performance. The analysis covers the initial six years of GHARR-1’s operation and includes projections for its whole 60-year lifespan. We closely observed the patterns of both the highest and average PPFs at 21 axial nodes, with measurements taken every ten years. The findings of this study reveal important patterns in power distribution within the core, which are essential for improving the safety regulations and fuel management techniques of the reactor. We provide a meticulous approach, extensive data, and an analysis of the findings, highlighting the significance of continuous monitoring and analysis for proactive management of nuclear reactors. The findings of this study not only enhance our comprehension of nuclear reactor safety but also carry significant ramifications for sustainable energy progress in Ghana and the wider global context. Nuclear engineering is essential in tackling global concerns, such as the demand for clean and dependable energy sources. Research on optimising nuclear reactors, particularly in terms of safety and efficiency, is crucial for the ongoing advancement and acceptance of nuclear energy.
基金Supported by Hi-Tech Research and Development Program of China (grants No.2002AA414060)
文摘This paper presents a coupled magnetic-circuit method for computing the magnetic force of air-core reactor under short-time current. The current and the magnetic flux density are computed first and then the magnetic force is obtained. Thus, the dynamic stability performance of air-core reactor can be analyzed at the design stage to reduce experimental cost and shorten the lead-time of product development.
文摘Based on the method of compound and additional conditions under the conditions of the equal temperature rise and the equal potential drop (P.D.) of resistance, the application of design software of dry-type air-core reactor is introduced in this thesis. The analytical methods of the inductance are also given. This approach is proved entirely feasible in theory through the simplification with Bartky transformation, and is able to quickly and accurately calculate reactor inductance. This paper presents the analytical methods of the loss of dry-type air-core reactor as well.
文摘The purpose of the present study is to develop a methodology to evaluate fuel discharge through the CRGT (control-rod guide tube) during CDAs (core-disruptive accidents) of SFRs (sodium-cooled fast reactors), since fuel discharge will decrease the core reactivity and CRGTs have a potential to provide an effective discharge path. Fuel discharge contains multi-component fluid dynamics with phase changes, and, in the present study, the SFR safety analysis code SIMMER (Sn, implicit, multifield, multicomponent, Eulerian recriticality) was utilized as a technical basis. First, dominant phenomena affecting fuel discharge through the CRGT are identified based on parametric calculations by the SIMMER code. Next, validations on the code models closely relating to these phenomena were carried out based on experimental data. It was shown that the SIMMER code with some model modifications could reproduce the experimental results appropriately. Through the present study, the evaluation methodology for the molten-fuel discharge through the CRGT was successfully developed.