期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Reduced-order method for nuclear reactor primary circuit calculation
1
作者 Ze-Long Zhao Ya-Hui Wang +2 位作者 Zhe-Xian Liu Hong-Hang Chi Yu Ma 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第11期28-45,共18页
Accurate real-time simulations of nuclear reactor circuit systems are particularly important for system safety analysis and design.To effectively improve computational efficiency without reducing accuracy,this study e... Accurate real-time simulations of nuclear reactor circuit systems are particularly important for system safety analysis and design.To effectively improve computational efficiency without reducing accuracy,this study establishes a thermal-hydraulics reduced-order model(ROM)for nuclear reactor circuit systems.The full-order circuit system calculation model is first established and verified and then used to calculate the thermal-hydraulic properties of the circuit system under different states as snapshots.The proper orthogonal decomposition method is used to extract the basis functions from snapshots,and the ROM is constructed using the least-squares method,effectively reducing the difficulty in constructing the ROM.A comparison between the full-order simulation and ROM prediction results of the AP1000 circuit system shows that the proposed ROM can improve computational efficiency by 1500 times while achieving a maximum relative error of 0.223%.This research develops a new direction and perspective for the digital twin modeling of nuclear reactor system circuits. 展开更多
关键词 reactor system model Primary circuit Reduced-order Proper orthogonal decomposition Least-squares method
下载PDF
An Axial Dispersion Model for Evaporating Bubble Column Reactor 被引量:3
2
作者 谢刚 李希 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期214-220,共7页
Evaporating bubble column reactor (EBCR) is a kind of aerated reactor in which the reaction heat is removed by the evaporation of volatile reaction mixture. In this paper, a mathematical model that accounts for the ga... Evaporating bubble column reactor (EBCR) is a kind of aerated reactor in which the reaction heat is removed by the evaporation of volatile reaction mixture. In this paper, a mathematical model that accounts for the gas-liquid exothermic reaction and axial dispersions of both gas and liquid phase is employed to study the performance of EBCR for the process of p-xylene(PX) oxidation. The computational results show that there are remarkable concentration and temperature gradients in EBCR for high ratio of height to diameter (H/DT). The temperature is lower at the bottom of column and higher at the top, due to rapid evaporation induced by the feed gas near the bottom. The concentration profiles in the gas phase are more nonuniform than those (except PX) in the liquid phase, which causes more solvent burning consumption at high H/DT ratio. For p-xylene oxidation, theo ptimal H/DT is around 5. 展开更多
关键词 evaporating bubble column reactor axial dispersion reactor model gas-liquid reaction P-XYLENE OXIDATION
下载PDF
Intensification of Deep Hydrodesulfurization Through a Two-stage Combination of Monolith and Trickle Bed Reactors 被引量:1
3
作者 许闵 刘辉 +1 位作者 季生福 李成岳 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第8期888-897,共10页
Deep hydrodesulfurization (HDS) is an important process to produce high quality liquid fuels with ultra-low sul- fur. Process intensification for deep HDS could be implemented by developing new active catalysts and/... Deep hydrodesulfurization (HDS) is an important process to produce high quality liquid fuels with ultra-low sul- fur. Process intensification for deep HDS could be implemented by developing new active catalysts and/or new types of reactors. In this work, the kinetics of dibenzothiophene (DBT) hydrodesulfurization over Ni-P/SBA-15/ cordierite catalyst was investigated at 340-380 ℃ and 3.0-5.0 MPa. The first-order reaction model with respect to both DBT and H2 was used to fit the kinetics data in a batch recycle operation system. It is found that both the activation energy and rate constant over the Ni-P monolithic catalyst under our operating conditions are close to those over conventionally used HDS catalysts. Comparative performance studies of two types of reactors, i.e., trickle bed reactor and monolithic reactor, were performed based on reactor modeling and simulation. The results indicate that the productivity of the monolithic reactor is 3 times higher than that of the trickle bed reactor on a catalyst weight basis since effective utilization of the catalyst is higher in the monolithic reactor, but the volumetric productivity of the monolithic reactor is lower for HDS of DBT. Based on simulation results, a two- reactor-in-series configuration for hydrodesulfurization is proposed, in which a monolithic reactor is followed by a tickled bed reactor so as to attain intensified performance of the system converting fuel oil of different sulfur-containing compounds. It is illustrated that the two reactor scheme outperforms the trickle bed reactor both on reactor volume and catalyst mass bases while the content of sulfur is reduced from 200 μg·g-1 to about 10 μ·g-1. 展开更多
关键词 Hydrodesulfurization (HDS) Kinetics Mass transfer Monolithic reactor Trickle bed reactor reactor modeling
下载PDF
Modeling of a slurry bubble column reactor for Fischer-Tropsch syn- thesis 被引量:2
4
《Journal of Coal Science & Engineering(China)》 2012年第1期88-95,共8页
On the basis of the global CO consumption rate model, the lumped product distribution model and the sedimenta- tion-dispersion model of a catalyst, a steady-state, one-dimensional mathematical model of the slurry bubb... On the basis of the global CO consumption rate model, the lumped product distribution model and the sedimenta- tion-dispersion model of a catalyst, a steady-state, one-dimensional mathematical model of the slurry bubble column reactor for Fischer-Tropsch synthesis were established. The mathematical simulation of the slurry bubble column reactor for Fischer-Tropsch synthesis was carried out under the following typical industrial operating conditions: temperature 230 ℃, pressure 3.0 MPa, gas flow 5x 105 m3/h, catalyst content in slurry phase 30%, reactor diameter 5.0 m and the composition of feed gas: y(H2)=0.60, y(CO)=0.30, y(N2)=0.10. The influences of operating pressure, temperature and re(HE)Ira(CO) in feed gas on the reactor's reaction performance were simulated. 展开更多
关键词 slurry bubble column reactor Fischer-Tropsch synthesis reactor model
下载PDF
Effect of hydrogen combustion reaction on the dehydrogenation of ethane in a fixed-bed catalytic membrane reactor 被引量:2
5
作者 Masoud Hasany Mohammad Malakootikhah +1 位作者 Vahid Rahmanian Soheila Yaghmaei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第8期1316-1325,共10页
A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction,removal... A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction,removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production.For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used.Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogenation method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and signi ficant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor. 展开更多
关键词 Catalytic membrane reactor Mathematical modeling Ethane dehydrogenation Hydrogen combustion
下载PDF
Modeling and experimental studies of methyl methacrylate polymerization in a tubular reactor 被引量:1
6
作者 Mohamad-Taghi Rostami Ali Daneshgar 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第12期1655-1663,共9页
In this study, rheological examination of the mixture of a tubular reactor in which methyl methacrylate was polymerized has been studied. The n(flow behavior index) value of Power Law Model of mixture contained in the... In this study, rheological examination of the mixture of a tubular reactor in which methyl methacrylate was polymerized has been studied. The n(flow behavior index) value of Power Law Model of mixture contained in the reactor has been determined within the span of 0.3492 to 0.9889 by curve fitting. Employing these numerical data for velocity profile, the reactor has been modeled. Moreover, the functions of the reactor have been compared in the three modes of plug, mixed and laminar flow. The results obtained in this research indicate that the polymethyl methacrylate mixture contained in the reactor is pseudo-plastic. Moreover, as the conversion grows, the velocity profile starts as a parabolic profile and approaches the plug mode; although it never reaches the plug. The other conclusions borne in this study indicate that when the reactor's radius is decreased, the conversion rate grows. However, as decreasing the radius would also reduce the productions rate, this procedure is not economical. Finally, in this modeling, the amount of conversion is equal to 56.47% at the end and according to its laboratory proportion which is 55.88%, it has reached the conclusion that the modeling duly undertaken is applicable and valid. 展开更多
关键词 Conversion Laminar flow MMA Modeling Tubular reactor
下载PDF
Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling 被引量:1
7
作者 梅书哲 王权 +8 位作者 郝美兰 徐健凯 肖红领 冯春 姜丽娟 王晓亮 刘峰奇 徐现刚 王占国 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第9期82-86,共5页
Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform perfor... Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform performanee, the flow field and ternperature field in a GaN-MOCVD reactor are investigated by modeling and simulating. To make the simulation results more consistent with the actual situation, the gases in the reactor are considered to be compressible, making it possible to investigate the distributions of gas density and pressure in the reactor. The computational fluid dynamics method is used to stud,v the effects of inlet gas flow velocity, pressure in the reactor, rotational speed of graphite susceptor, and gases used in the growth, which has great guiding~ significance for the growth of GaN fihn materials. 展开更多
关键词 MOCVD Flow Field and Temperature Field in GaN-MOCVD reactor Based on Computational Fluid Dynamics Modeling GAN
下载PDF
MPC of distillation column with side reactors for methyl acetate 被引量:2
8
作者 Cuimei Bo Jun Li +3 位作者 Lei Yang Hui Yi Jihai Tang Xu Qiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第12期1798-1804,共7页
This paper focuses on the dynamic control of distillation column with side reactors(SRC) for methyl acetate production. To obtain the optimum integrated structure and steady state simulation, the systematic design app... This paper focuses on the dynamic control of distillation column with side reactors(SRC) for methyl acetate production. To obtain the optimum integrated structure and steady state simulation, the systematic design approach based on the concept of independent reaction amount is applied to the process of SRC for methyl acetate production. In addition to the basic control loops, multi-variable model predictive control modular with methyl acetate concentration and temperature of sensitive plate is designed. Then, based on process simulation software Aspen Plus, dynamic simulation of SRC for methyl acetate production is used to verify the effectiveness of the control scheme. 展开更多
关键词 Distillation column with side reactors (SRC) Multi-variable model predictive control (MPC) Methyl acetate Steady-state optimization Dynamic simulation
下载PDF
Modeling of C_(8) Aromatics Isomerization in a Radial Bed Reactor
9
作者 Gao Ninghan Tang Xiaojin +1 位作者 Zhou Zhenhuan Xu Jian 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2022年第2期112-117,共6页
Reactor models were developed to describe the isomerization reaction process of C_(8) aromatics by applying a six-component sequential reaction network.Lab-scale experimental data were used in an axial bed reactor mod... Reactor models were developed to describe the isomerization reaction process of C_(8) aromatics by applying a six-component sequential reaction network.Lab-scale experimental data were used in an axial bed reactor model,and dynamic parameters were fitted by simulated annealing algorithm.In addition,industrial data and calculated dynamic parameters were used to determine the six-component concentration distributions using a radial reactor model.The influence of back-mixing on reaction performance was investigated.It was found that the model considering back-mixing was much closer to the real industrial reaction process. 展开更多
关键词 Isomerization of C_(8)aromatics reactor model radial bed reactor
下载PDF
Study on Modeling for a New FCC Technique——MIP Riser Reactor
10
作者 Duan Liangwei Zhang Lin +1 位作者 Sun Peng Weng Huixin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2012年第1期50-55,共6页
This research work developed a model for the MIP riser reactor using the data collected from an industrial MIP unit.Based on analysis of flow patterns in the reactor,three models were established and a comparison was ... This research work developed a model for the MIP riser reactor using the data collected from an industrial MIP unit.Based on analysis of flow patterns in the reactor,three models were established and a comparison was made on each other.The results indicated that Model Ⅲ,which was assumed a plug flow in the first reaction zone and a gas plug flow and a continuously stirred catalyst flow in the second reaction zone,was the best.The results of this research could offer an information and guidance for optimization and development of MIP unit. 展开更多
关键词 MIP reactor model lump kinetic model OLEFINS
下载PDF
The Statistical Experimental Design for Chemical Reactors Modeling
11
作者 Graciela Prieto Oscar Prieto +3 位作者 Teresa Unzaga Carlos Gay Kazunori Takashima Akira Mizuno 《Applied Mathematics》 2016年第14期1534-1546,共13页
The Statistical Experimental Design techniques are the most powerful tools for the chemical reactors experimental modeling. Empirical models can be formulated for representing the chemical behavior of reactors with th... The Statistical Experimental Design techniques are the most powerful tools for the chemical reactors experimental modeling. Empirical models can be formulated for representing the chemical behavior of reactors with the minimal effort in the necessary number of experimental runs, hence, minimizing the consumption of chemicals and the consumption of time due to the reduction in the number of experimental runs and increasing the certainty of the results. Four types of nonthermal plasma reactors were assayed seeking for the highest efficiency in obtaining hydrogen and ethylene. Three different geometries for AC high voltage driven reactors, and only a single geometry for a DC high voltage pulse driven reactor were studied. According to the fundamental principles of chemical kinetics and considering an analogy among the reaction rate and the applied power to the plasma reactor, the four reactors are modeled following the classical chemical reactors design to understand if the behavior of the nonthermal plasma reactors can be regarded as the chemical reactors following the flow patterns of PFR (Plug Flow Reactor) or CSTR (Continuous Stirred Tank Reactor). Dehydrogenation is a common elimination reaction that takes place in nonthermal plasmas. Owing to this characteristic, a paraffinic heavy oil with an average molecular weight corresponding to C15 was used to study the production of light olefins and hydrogen. 展开更多
关键词 Chemical reactors Modeling Statistical Experimental Designs Nonthermal Plasma Chemical reactors
下载PDF
Modeling and Control of a Biodiesel Transesterification Reactor
12
作者 Tombomieye Adokiye Akpa Jackson Gunorubon Dagde Kenneth Kenkugile 《Advances in Chemical Engineering and Science》 2020年第3期210-224,共15页
Dynamic Models for predicting the concentration profiles of the reactants and product in a Continuous Stirred Tank Reactor for the transesterification of used cooking oil (triglyceride) to biodiesel has been developed... Dynamic Models for predicting the concentration profiles of the reactants and product in a Continuous Stirred Tank Reactor for the transesterification of used cooking oil (triglyceride) to biodiesel has been developed using the principle of conservation of mass. The developed system of differential equations were integrated numerically using fourth order Runge-Kutta algorithm embedded in ode 45 solver of 7.5 Mathlab program. The models were validated by solving the model equations with kinetic data and other relevant data from literatures. The results and trends were similar and in agreement with those from these literatures. Simulations of the reactor to (±) step changes in the inlet flowrates of the reactants (used cooking oil and methanol) showed great effect on biodiesel production, (instability—oscillations and reduction in output concentration of biodiesel). A feedback control strategy was developed with a Proportional-Integral (PI) Controller and a close loop model was developed for control studies. The closed loop response of the reactor output (biodiesel concentration) showed continuous oscillatory response with offset. Hence the controller parameters (proportional gain <em>K</em><em><sub>c</sub></em> and integral time <img src="Edit_b22777c4-287e-4ff4-a82a-0b5c9393b5ab.bmp" alt="" />) were tuned using the “On-Line Trial and Error Method” implemented using MathLab Simulink to obtain optimum values that ensured quick stability of the closed-loop system, reduced or no oscillatory response and no offset. The optimum controller parameters were: proportional gain <em style="white-space:normal;">K</em><em style="white-space:normal;"><sub>c</sub></em> =8.306 and integral time <img src="Edit_7ad87ff7-7563-48b0-865b-70efc6c433cd.bmp" alt="" />= 17.157 minutes. <p> <br /> </p> 展开更多
关键词 TRANSESTERIFICATION BIODIESEL reactor Model And Simulation Feedback Con-trol
下载PDF
Introducing the nth-Order Features Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (nth-FASAM-N): II. Illustrative Example
13
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2024年第1期43-95,共54页
This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by con... This work highlights the unparalleled efficiency of the “n<sup>th</sup>-Order Function/ Feature Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-FASAM-N) by considering the well-known Nordheim-Fuchs reactor dynamics/safety model. This model describes a short-time self-limiting power excursion in a nuclear reactor system having a negative temperature coefficient in which a large amount of reactivity is suddenly inserted, either intentionally or by accident. This nonlinear paradigm model is sufficiently complex to model realistically self-limiting power excursions for short times yet admits closed-form exact expressions for the time-dependent neutron flux, temperature distribution and energy released during the transient power burst. The n<sup>th</sup>-FASAM-N methodology is compared to the extant “n<sup>th</sup>-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems” (n<sup>th</sup>-CASAM-N) showing that: (i) the 1<sup>st</sup>-FASAM-N and the 1<sup>st</sup>-CASAM-N methodologies are equally efficient for computing the first-order sensitivities;each methodology requires a single large-scale computation for solving the “First-Level Adjoint Sensitivity System” (1<sup>st</sup>-LASS);(ii) the 2<sup>nd</sup>-FASAM-N methodology is considerably more efficient than the 2<sup>nd</sup>-CASAM-N methodology for computing the second-order sensitivities since the number of feature-functions is much smaller than the number of primary parameters;specifically for the Nordheim-Fuchs model, the 2<sup>nd</sup>-FASAM-N methodology requires 2 large-scale computations to obtain all of the exact expressions of the 28 distinct second-order response sensitivities with respect to the model parameters while the 2<sup>nd</sup>-CASAM-N methodology requires 7 large-scale computations for obtaining these 28 second-order sensitivities;(iii) the 3<sup>rd</sup>-FASAM-N methodology is even more efficient than the 3<sup>rd</sup>-CASAM-N methodology: only 2 large-scale computations are needed to obtain the exact expressions of the 84 distinct third-order response sensitivities with respect to the Nordheim-Fuchs model’s parameters when applying the 3<sup>rd</sup>-FASAM-N methodology, while the application of the 3<sup>rd</sup>-CASAM-N methodology requires at least 22 large-scale computations for computing the same 84 distinct third-order sensitivities. Together, the n<sup>th</sup>-FASAM-N and the n<sup>th</sup>-CASAM-N methodologies are the most practical methodologies for computing response sensitivities of any order comprehensively and accurately, overcoming the curse of dimensionality in sensitivity analysis. 展开更多
关键词 Nordheim-Fuchs reactor Safety Model Feature Functions of Model Parameters High-Order Response Sensitivities to Parameters Adjoint Sensitivity Systems
下载PDF
Complementarity of CFD,experimentation and reactor models for solving challenging fluidization problems 被引量:4
14
作者 John R. Grace Tingwen Li 《Particuology》 SCIE EI CAS CSCD 2010年第6期498-500,共3页
Experimentalists, numerical modellers and reactor modellers need to work together, not only just for validation of numerical codes, but also to shed fundamental light on each other's problems and underlying assumptio... Experimentalists, numerical modellers and reactor modellers need to work together, not only just for validation of numerical codes, but also to shed fundamental light on each other's problems and underlying assumptions. Several examples are given, Experimental gas axial dispersion data provide a means of choosing the most appropriate boundary condition (no slip, partial slip or full slip) for particles at the wall of fluidized beds. CFD simulations help to identify how close "two-dimensional" experimental columns are to being truly two-dimensional and to representing three-dimensional columns. CFD also can be used to provide a more rational means of establishing assumptions needed in the modelling of two-phase fluidized bed reactors, for example how to deal with cases where there is a change in molar flow (and hence volumetric flow) as a result of chemical reactions. 展开更多
关键词 Fluidization Mixing Computational Fluid dynamics Wall slip reactor modelling Volume change
原文传递
Crystal Structure Evolution of the Cu-rich Nano Precipitates from bcc to 9R in Reactor Pressure Vessel Model Steel 被引量:7
15
作者 Liu FENG Bangxin ZHOU +1 位作者 Jianchao PENG Junan WANG 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2013年第6期707-712,共6页
The crystal structure evolution of the Cu-rich nano precipitates from bcc to 9R during thermal aging was studied in nuclear reactor pressure vessel (RPV) model steels. The specimens, contained higher copper and nick... The crystal structure evolution of the Cu-rich nano precipitates from bcc to 9R during thermal aging was studied in nuclear reactor pressure vessel (RPV) model steels. The specimens, contained higher copper and nickel contents than commercially available one, were heated at 890 ~C for 0.5 h and then water quenched followed by tempering at 0(50 ~C for I0 h and aging at 400 ~C for 1000 h. It was observed that bcc and 9R orthogonal structure, as well as 9R orthogonal and 9R monoclinic structure, coexist in a single Cu-rich nano precipitate. Further analyses pointed out that Cu-rich nano precipitates of bcc structure were not stable, it may preferentially transform to 9R orthogonal structure and then to 9R monoclinic structure. This results showed that the crystal structure evolution of the Cu-rich nano precipitates was complex. 展开更多
关键词 reactor pressure vessel model steel Thermal aging Cu-rich nano precip-itates Structure evolution HRTEM
原文传递
Modeling of pyridine synthesis process in a coupled fluidized bed reactor 被引量:1
16
作者 Shuaishuai Zhou Jing Li +3 位作者 Congzhen Qiao Mengxi Liu Chunxi Lu Yan Bai 《Particuology》 SCIE EI CAS CSCD 2023年第4期69-81,共13页
To obtain the optimal operating conditions of a coupled reactor for pyridine synthesis,reactor modeling process is carried out in this paper.During the modeling process,the flow hydrodynamics,heat transfer behavior,in... To obtain the optimal operating conditions of a coupled reactor for pyridine synthesis,reactor modeling process is carried out in this paper.During the modeling process,the flow hydrodynamics,heat transfer behavior,inter-phase mass transfer behavior and reaction kinetics were taken into consideration consequently.Further,a regression program based on least square method was proposed to regress the model parameters.The prediction results agreed well with the experimental results with an average deviation of 5.9%.Finally,by setting suitable aim function,the optimal operating conditions of the coupled reactor for pyridine synthesis were determined. 展开更多
关键词 reactor modeling Pyridine synthesis Inter-phase mass transfer Optimal operating conditions
原文传递
Computational fluid dynamics simulation of hydrodynamics in the riser of an external loop airlift reactor 被引量:6
17
作者 Xuedong Jiang Ning Yang Bolun Yang 《Particuology》 SCIE EI CAS CSCD 2016年第4期95-101,共7页
Local hydrodynamics in the riser of an external loop airlift reactor (EL-ALR) are identified and the performances of three drag models are evaluated in computational fluid dynamics simulation. The simulation results... Local hydrodynamics in the riser of an external loop airlift reactor (EL-ALR) are identified and the performances of three drag models are evaluated in computational fluid dynamics simulation. The simulation results show that the Schiller-Naumann drag model underestimated the local gas holdup at lower superficial gas velocity whereas the Tomiyama drag model overestimated that at higher superficial gas velocity. By contrast, the dual-bubble-size (DBS)-local drag model gave more reasonable radial and axial distri-butions of gas holdup in all cases. The reason is that the DBS-local drag model gave correct values of the lumped parameter, i,e., the ratio of the drag coefficient to bubble diameter, for varying operating conditions and radial positions. This ratio is reasonably expected to decrease with increasing superficial gas velocity and be smaller in the center and larger near the wall. Only the DBS-local drag model correctly reproduced these trends. The radial profiles of the axial velocity of the liquid and gas predicted by the DBS-local model also agreed well with experimental data. 展开更多
关键词 Computational fluid dynamics External loop airlift reactor Drag model Gas holdup Mnltiscale Mesoscale
原文传递
Novel photocatalytic reactor for degradation of DDT in water and its optimization model 被引量:1
18
作者 Wei-hai PANG Nai-yun GAO +1 位作者 Yang DENG Yu-lin TANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第5期732-738,共7页
A novel photocatalytic reactor was developed to remove (1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane) (DDT) from water. In the reactor, a cenosphere was used to support TiO2 film made by means of sol-gel. Becau... A novel photocatalytic reactor was developed to remove (1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane) (DDT) from water. In the reactor, a cenosphere was used to support TiO2 film made by means of sol-gel. Because the cenospheres were coated with TiO2, their specific gravity was slightly increased from the original 0.6-0.8 to 0.8-0.9, so that they were able to be suspended in water. With the mixed operation of a bubbler, the water in the reactor was in a well-fluidized state. The bottom of the reactor is a sand filter bed, which can be used to prevent the photocatalyst from being lost. A mathematical model of the reactor has been developed in the two primary influential factors: ultraviolet (UV) light intensity and photocatalyst concentration. With such a model, the reactor can be designed more reasonably. 展开更多
关键词 Photocatalytic reactor Persistent organic pollutants (POPs) reactor model
原文传递
Modeling of fixed bed reactor for coal tar hydrogenation via the kinetic lumping approach 被引量:3
19
作者 Fei Dai Yalin Zhang +3 位作者 Endong Xia Zhanquan Zhang Zhihua Zhang Chunshan Li 《Carbon Resources Conversion》 2018年第3期279-283,共5页
Hydrogenation technology is an indispensable chemical upgrading process for converting the heavy feedstock into favorable lighter products.In this work,a new kinetic model containing four hydrocarbon lumps(feedstock,d... Hydrogenation technology is an indispensable chemical upgrading process for converting the heavy feedstock into favorable lighter products.In this work,a new kinetic model containing four hydrocarbon lumps(feedstock,diesel,gasoline,cracking gas)was developed to describe the coal tar hydrogenation process,the Levenberg–Marquardt’s optimization algorithm was used to determine the kinetic parameters by minimizing the sum of square errors between experimental and calculated data,the predictions from model validation showed a good agreement with experimental values.Subsequently,an adiabatic reactor model based on proposed lumped kinetic model was constructed to further investigate the performance of hydrogenation fixed-bed units,the mass balance and energy balance within the phases in the reactor were taken into accounts in the form of ordinary differential equation.An application of the reactor model was performed for simulating the actual bench-scale plant of coal tar hydrogenation,the simulated results on the products yields and temperatures distribution along with the reactor are shown to be good consistent with the experimental data. 展开更多
关键词 Coal tar reactor model Lumped kinetics HYDROGENATION
原文传递
Modeling and simulation of circulating fluidized bed reactors applied to a carbonation/calcination loop 被引量:1
20
作者 Rafael A.Sánchez Hugo A.Jakobsen 《Particuology》 SCIE EI CAS CSCD 2014年第4期116-128,共13页
A fluid dynamic model for a gas-solid circulating fluidized bed (CFB) designed using two coupled riser reactors is developed and implemented numerically with code programmed in Matlab. The fluid dynamic model contai... A fluid dynamic model for a gas-solid circulating fluidized bed (CFB) designed using two coupled riser reactors is developed and implemented numerically with code programmed in Matlab. The fluid dynamic model contains heat and species mass balances to calculate temperatures and compositions for a carbonation/calcination loop process. Because of the high computational costs required to resolve the three-dimensional phenomena, a model representing a trade-offbetween computational time requirements and accuracy is developed. For dynamic processes with a solid flux between the two reactor units that depends on the fluid dynamics of both risers, a dynamic one-dimensional two-fluid model is sufficient. A two-fluid model using the constant particle viscosity closure for the stress term is used for the solid phase, and an algebraic turbulence model is applied to the gas phase. The numerical model implementa- tion is based on the finite volume method with a staggered grid scheme. The exchange of solids between the reactor units constituting the circulating fluidized bed (solid flux) is implemented through additional mass source/sink terms in the continuity equations of the two phases, For model validation, a relevant experimental analysis provided in the literature is reproduced by the numerical simulations, The numerical analysis indicates that sufficient heat integration between the two reactor units is important for the performance of the circulating fluidized bed system, The two-fluid model performs fairly well for this chemical process operated in a CFB designed as two coupled riser reactors. Further analysis and optimization of the solution algorithms and the reactor coupling strategy is warranted. 展开更多
关键词 Chemical reactors Fluidization Mathematical modeling Multiphase flow Simulation
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部