功率控制系统(Power Control System,PCS)是反应堆控制系统(Reactor Control System,RCS)的重要组成部分,它完成功率提升、功率保持与功率调节的作用。在钍基熔盐堆(Thorium Molten Salt Reactor,TMSR)核能系统固态堆设计方案中,功率控...功率控制系统(Power Control System,PCS)是反应堆控制系统(Reactor Control System,RCS)的重要组成部分,它完成功率提升、功率保持与功率调节的作用。在钍基熔盐堆(Thorium Molten Salt Reactor,TMSR)核能系统固态堆设计方案中,功率控制器根据实测功率与设定功率值之间的偏差和偏差的变化趋势,按照经典的比例-积分-微分(Proportional Integral Derivative,PID)控制算法,给出调节控制棒的运动距离和运动方向等信号。PCS的PID算法设计与基于反应堆中子物理、热工及控制棒的传动性能构成的闭环控制系统的特性有关,其不同参数的确定与系统的静态和动态性能指标的要求相对应。本文从控制的角度出发,在已有的控制棒样机中设计的棒控棒位系统及相关中子物理的基础上对PCS的PID算法进行多层次仿真与参数分析,并对系统的可控性与可测性进行分析验证。分析及仿真结果表明两种控制模型下的系统均是完全可控及完全可测的,在合适的PID参数集下均能体现响应的快速性及系统的良好鲁棒性和抗干扰能力,具有实际的应用意义。展开更多
文摘功率控制系统(Power Control System,PCS)是反应堆控制系统(Reactor Control System,RCS)的重要组成部分,它完成功率提升、功率保持与功率调节的作用。在钍基熔盐堆(Thorium Molten Salt Reactor,TMSR)核能系统固态堆设计方案中,功率控制器根据实测功率与设定功率值之间的偏差和偏差的变化趋势,按照经典的比例-积分-微分(Proportional Integral Derivative,PID)控制算法,给出调节控制棒的运动距离和运动方向等信号。PCS的PID算法设计与基于反应堆中子物理、热工及控制棒的传动性能构成的闭环控制系统的特性有关,其不同参数的确定与系统的静态和动态性能指标的要求相对应。本文从控制的角度出发,在已有的控制棒样机中设计的棒控棒位系统及相关中子物理的基础上对PCS的PID算法进行多层次仿真与参数分析,并对系统的可控性与可测性进行分析验证。分析及仿真结果表明两种控制模型下的系统均是完全可控及完全可测的,在合适的PID参数集下均能体现响应的快速性及系统的良好鲁棒性和抗干扰能力,具有实际的应用意义。