Wavelength division multiplexing (WDM) is widely used in modern optics and electronics. For future quantum computers, the integration of readout is also vitally important. Here we incorporate an idea of WDM to demon...Wavelength division multiplexing (WDM) is widely used in modern optics and electronics. For future quantum computers, the integration of readout is also vitally important. Here we incorporate an idea of WDM to demon- strate multiplexing readout of charge qubits by using a single integrated on-chip superconducting microwave resonator. Two distant qubits formed by two graphene double quantum dots (DQDs) are simultaneously readout by an interconnected superconducting resonator. This readout device is found to have 2 MHz bandwidth and 1.1 x 10-4 e/x/-H-z charge sensitivity. Different frequency gate-modulations, which are used selectively to change the impedance of the qubits, are applied to different DQDs, which results in separated sidebands in the spectrum. These sidebands enable a multiplexing readout for the multi-qubits circuit. This architecture can largely reduce the amount of detectors and can improve the prospect for scaling-up of semiconductor qubits.展开更多
Based on the six months data set of ARGO-YBJ experiment with analog read-out and its Monte Carlo simulation, we study the difference between different primaries induced showers by using the space-time information of t...Based on the six months data set of ARGO-YBJ experiment with analog read-out and its Monte Carlo simulation, we study the difference between different primaries induced showers by using the space-time information of the charged particles in Extensive Air Showers. With five parameters which can efficiently pick out primary proton induced showers as inputs of an artificial neural network, the proton Spectrum from 100 TeV to 10 PeV can be obtained.展开更多
基金Supported by the National Basic Research Program of China under Grant No 2011CBA00200the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB01030000the National Natural Science Foundation of China under Grant Nos 11222438,11174267,61306150,11304301 and 91421303
文摘Wavelength division multiplexing (WDM) is widely used in modern optics and electronics. For future quantum computers, the integration of readout is also vitally important. Here we incorporate an idea of WDM to demon- strate multiplexing readout of charge qubits by using a single integrated on-chip superconducting microwave resonator. Two distant qubits formed by two graphene double quantum dots (DQDs) are simultaneously readout by an interconnected superconducting resonator. This readout device is found to have 2 MHz bandwidth and 1.1 x 10-4 e/x/-H-z charge sensitivity. Different frequency gate-modulations, which are used selectively to change the impedance of the qubits, are applied to different DQDs, which results in separated sidebands in the spectrum. These sidebands enable a multiplexing readout for the multi-qubits circuit. This architecture can largely reduce the amount of detectors and can improve the prospect for scaling-up of semiconductor qubits.
基金National Natural Science Foundation of China (10120130794)
文摘Based on the six months data set of ARGO-YBJ experiment with analog read-out and its Monte Carlo simulation, we study the difference between different primaries induced showers by using the space-time information of the charged particles in Extensive Air Showers. With five parameters which can efficiently pick out primary proton induced showers as inputs of an artificial neural network, the proton Spectrum from 100 TeV to 10 PeV can be obtained.