ADSP-TS101 is a high performance DSP with good properties of parallel processing and high speed.According to the real-time processing requirements of underwater acoustic communication algorithms,a real-time parallel p...ADSP-TS101 is a high performance DSP with good properties of parallel processing and high speed.According to the real-time processing requirements of underwater acoustic communication algorithms,a real-time parallel processing system with multi-channel synchronous sample,which is composed of multiple ADSP-TS101s,is designed and carried out.For the hardware design,field programmable gate array(FPGA)logical control is adopted for the design of multi-channel synchronous sample module and cluster/data flow associated pin connection mode is adopted for multiprocessing parallel processing configuration respectively.And the software is optimized by two kinds of communication ways:broadcast writing way through shared bus and point-to-point way through link ports.Through the whole system installation,connective debugging,and experiments in a lake,the results show that the real-time parallel processing system has good stability and real-time processing capability and meets the technical design requirements of real-time processing.展开更多
A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-B...A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-BSP board, extended multi-DSP board are analysed. The outstanding advantage is that the communication among different board components of this system is supported by high speed link ports & serial ports for increasing the system performance and computational power. Then the implementation of embedded real-time operating systems (RTOS) by us is discussed in detail. In this system, we adopt two kinds of parallel structures controlled by RTOS for parallel processing of algorithms. The experimental results show that exploitive period of the system is short, and maintenance convenient. Thus it is suitable for real-time image processing and can get satisfactory effect of image recognition.展开更多
A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architectu...A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.展开更多
This paper proposed a general purpose real-time image processing system based on a flexible DSP-based Network, which is implemented by a high bandwidth communication channel, links. The links is realized using FPGA an...This paper proposed a general purpose real-time image processing system based on a flexible DSP-based Network, which is implemented by a high bandwidth communication channel, links. The links is realized using FPGA and provides a bandwidth of 12. 8 Gbit/s. Using the links, The topologic of multi-DSP system can be changed online to meet the variabilities of the parallel algorithm of image processing. The system can be assembled with utmost tens of boards and maintain the high communication speed. Analysis of the system adaptivity to image processing is testified followed by actual results. Key words real-time image processing - multi-DSP - flexible - scalable - FPGA - links CLC number TP 303 Foundation item: Supported by the National Natural Science Foundation of China (60135020)Biography: MAO Hai-cen(1973-), male, Ph.D. candidate, research direction: artificial intelligence, expert system, pattern recognition and image processing展开更多
A real-time operating system (RTOS), also named OS, is designed based on the hardware platform of MC68376, and is implemented in the electronic control system for unit pump in diesel engine. A parallel and time-base...A real-time operating system (RTOS), also named OS, is designed based on the hardware platform of MC68376, and is implemented in the electronic control system for unit pump in diesel engine. A parallel and time-based task division method is introduced and the multi-task software architecture is built in the software system for electronic unit pump (EUP) system. The V-model software development process is used to control algorithm of each task. The simulation results of the hardware-in-the-loop simulation system (HILSS) and the engine experimental results show that the OS is an efficient real-time kernel, and can meet the real-time demands of EUP system; The built multi-task software system is real-time, determinate and reliable. V-model development is a good development process of control algorithms for EUP system, the control precision of control system can be ensured, and the development cycle and cost are also decreased.展开更多
A real time algorithm is presented here to recognize and analyze 8 channel simultaneous electro cardiograph(ECG). The algorithm transforms 8 channel simultaneous ECG into three orthogonal vectors and spatial veloc...A real time algorithm is presented here to recognize and analyze 8 channel simultaneous electro cardiograph(ECG). The algorithm transforms 8 channel simultaneous ECG into three orthogonal vectors and spatial velocity first, then forms the spatial velocity sample, and uses this spatial velocity sample to recognize each beat. The algorithm computes the averaged parameters by using averaged spatial velocity and the averaged ECG and the current parameters by using the current beat period and current width of QRS. The algorithm can recognize P, QRS and T onsets and ends of simultaneous 12 lead ECG precisely, and some arrhythmias such as premature ventricular beat, ventricular escape beat, R on T, bigeminy, trigeminy. The algorithm software works well on a real 8 channel ECG system and meets the demands of designing.展开更多
基金Sponsored by National Natural Science Foundation of China(60572098)
文摘ADSP-TS101 is a high performance DSP with good properties of parallel processing and high speed.According to the real-time processing requirements of underwater acoustic communication algorithms,a real-time parallel processing system with multi-channel synchronous sample,which is composed of multiple ADSP-TS101s,is designed and carried out.For the hardware design,field programmable gate array(FPGA)logical control is adopted for the design of multi-channel synchronous sample module and cluster/data flow associated pin connection mode is adopted for multiprocessing parallel processing configuration respectively.And the software is optimized by two kinds of communication ways:broadcast writing way through shared bus and point-to-point way through link ports.Through the whole system installation,connective debugging,and experiments in a lake,the results show that the real-time parallel processing system has good stability and real-time processing capability and meets the technical design requirements of real-time processing.
基金This project was supported by the National Natural Science Foundation of China(60135020) National Key Pre-researchProject of China(413010701 -3) .
文摘A novel reconfigurable hardware system which uses both muhi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-BSP board, extended multi-DSP board are analysed. The outstanding advantage is that the communication among different board components of this system is supported by high speed link ports & serial ports for increasing the system performance and computational power. Then the implementation of embedded real-time operating systems (RTOS) by us is discussed in detail. In this system, we adopt two kinds of parallel structures controlled by RTOS for parallel processing of algorithms. The experimental results show that exploitive period of the system is short, and maintenance convenient. Thus it is suitable for real-time image processing and can get satisfactory effect of image recognition.
基金Sponsored by the National Natural Science Foundation of China (60843005)the Basic Research Foundation of Beijing Institute of Technology(20070142018)
文摘A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.
文摘This paper proposed a general purpose real-time image processing system based on a flexible DSP-based Network, which is implemented by a high bandwidth communication channel, links. The links is realized using FPGA and provides a bandwidth of 12. 8 Gbit/s. Using the links, The topologic of multi-DSP system can be changed online to meet the variabilities of the parallel algorithm of image processing. The system can be assembled with utmost tens of boards and maintain the high communication speed. Analysis of the system adaptivity to image processing is testified followed by actual results. Key words real-time image processing - multi-DSP - flexible - scalable - FPGA - links CLC number TP 303 Foundation item: Supported by the National Natural Science Foundation of China (60135020)Biography: MAO Hai-cen(1973-), male, Ph.D. candidate, research direction: artificial intelligence, expert system, pattern recognition and image processing
文摘A real-time operating system (RTOS), also named OS, is designed based on the hardware platform of MC68376, and is implemented in the electronic control system for unit pump in diesel engine. A parallel and time-based task division method is introduced and the multi-task software architecture is built in the software system for electronic unit pump (EUP) system. The V-model software development process is used to control algorithm of each task. The simulation results of the hardware-in-the-loop simulation system (HILSS) and the engine experimental results show that the OS is an efficient real-time kernel, and can meet the real-time demands of EUP system; The built multi-task software system is real-time, determinate and reliable. V-model development is a good development process of control algorithms for EUP system, the control precision of control system can be ensured, and the development cycle and cost are also decreased.
文摘A real time algorithm is presented here to recognize and analyze 8 channel simultaneous electro cardiograph(ECG). The algorithm transforms 8 channel simultaneous ECG into three orthogonal vectors and spatial velocity first, then forms the spatial velocity sample, and uses this spatial velocity sample to recognize each beat. The algorithm computes the averaged parameters by using averaged spatial velocity and the averaged ECG and the current parameters by using the current beat period and current width of QRS. The algorithm can recognize P, QRS and T onsets and ends of simultaneous 12 lead ECG precisely, and some arrhythmias such as premature ventricular beat, ventricular escape beat, R on T, bigeminy, trigeminy. The algorithm software works well on a real 8 channel ECG system and meets the demands of designing.